The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off

References

  • Barabási, Albert-László; Stanley, H. Eugene. Fractal concepts in surface growth. Cambridge University Press, Cambridge, 1995. xx+366 pp. ISBN: 0-521-48318-2 MR1600794
  • Borodin, Alexei; Ferrari, Patrik L. Anisotropic growth of random surfaces in $2+1$ dimensions. Comm. Math. Phys. 325 (2014), no. 2, 603--684. MR3148098 http://arxiv.org/abs/0804.3035
  • Borodin, Alexei; Kuan, Jeffrey. Random surface growth with a wall and Plancherel measures for $\rm O(\infty)$. Comm. Pure Appl. Math. 63 (2010), no. 7, 831--894. MR2662425 http://arxiv.org/abs/0904.2607
  • Borodin, Alexei; Kuan, Jeffrey. Asymptotics of Plancherel measures for the infinite-dimensional unitary group. Adv. Math. 219 (2008), no. 3, 894--931. MR2442056 http://arxiv.org/abs/0712.1848
  • C. Boutillier, Modèles de dimères: comportements limites, Ph.D. thesis, Universit ́e de Paris-Sud, 2005.
  • S. Chhita, K. Johansson, B. Young, textitAsymptotic Domino Statistics in the Aztec Diamond, hrefhttp://arxiv.org/abs/1212.5414arXiv:1212.5414
  • Duits, Maurice. Gaussian free field in an interlacing particle system with two jump rates. Comm. Pure Appl. Math. 66 (2013), no. 4, 600--643. MR3020314 http://arxiv.org/abs/1105.4656
  • Kenyon, Richard. Height fluctuations in the honeycomb dimer model. Comm. Math. Phys. 281 (2008), no. 3, 675--709. MR2415464
  • M. Kardar, G. Parisi and Y. Zhang, textitDynamic Scaling of Growing Interfaces, Phys. Rev. Lett, Volume 56, Issue 9 (1986), 889--892.
  • Lenard, A. Correlation functions and the uniqueness of the state in classical statistical mechanics. Comm. Math. Phys. 30 (1973), 35--44. MR0323270
  • Miller, Peter D. Applied asymptotic analysis. Graduate Studies in Mathematics, 75. American Mathematical Society, Providence, RI, 2006. xvi+467 pp. ISBN: 0-8218-4078-9 MR2238098
  • Petrov, L; textitAsymptotics of Uniformly Random Lozenge Tilings of Polygons. Gaussian Free Field (2012), to appear in Ann. Prob. hrefhttp://arxiv.org/abs/1206.5123arXiv:1206.5123
  • Sheffield, Scott. Gaussian free fields for mathematicians. Probab. Theory Related Fields 139 (2007), no. 3-4, 521--541. MR2322706 http://arxiv.org/abs/0812.0022
  • Soshnikov, Alexander B. Gaussian fluctuation for the number of particles in Airy, Bessel, sine, and other determinantal random point fields. J. Statist. Phys. 100 (2000), no. 3-4, 491--522. MR1788476 http://arxiv.org/math-ph/9907012v2
  • Warren, Jon; Windridge, Peter. Some examples of dynamics for Gelfand-Tsetlin patterns. Electron. J. Probab. 14 (2009), no. 59, 1745--1769. MR2535012 http://arxiv.org/abs/0812.0022
  • D.E. Wolf, Kinetic roughening of vicinal surfaces, Phys. Rev. Lett. 67 (1991), 1783–-1786.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.