Moment bounds and concentration inequalities for slowly mixing dynamical systems

Sébastien Gouëzel (Université Rennes 1)
Ian Melbourne (University of Warwick)

Abstract


We obtain optimal moment bounds for Birkhoff sums, and optimal concentration inequalities, for a large class of slowly mixing dynamical systems, including those that admit anomalous diffusion in the form of a stable law or a central limit theorem with nonstandard scaling $(n\log n)^{1/2}$.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-30

Publication Date: October 3, 2014

DOI: 10.1214/EJP.v19-3427

References

  • Aaronson, Jon; Denker, Manfred. Local limit theorems for partial sums of stationary sequences generated by Gibbs-Markov maps. Stoch. Dyn. 1 (2001), no. 2, 193--237. MR1840194
  • Armstead, Douglas N.; Hunt, Brian R.; Ott, Edward. Anomalous diffusion in infinite horizon billiards. Phys. Rev. E (3) 67 (2003), no. 2, 021110, 7 pp. MR1974617
  • Astashkin, Sergey; Sukochev, Fedor; Wong, Chin Pin. Disjointification of martingale differences and conditionally independent random variables with some applications. Studia Math. 205 (2011), no. 2, 171--200. MR2824894
  • Balint, P.; Chernov, N.; Dolgopyat, D. Limit theorems for dispersing billiards with cusps. Comm. Math. Phys. 308 (2011), no. 2, 479--510. MR2851150
  • Balint, P.; Chernov, N.; Dolgopyat, D. Convergence of moments for dispersing billiards with cusps, Preprint, 2013.
  • Balint, Peter; Gouezel, Sebastien. Limit theorems in the stadium billiard. Comm. Math. Phys. 263 (2006), no. 2, 461--512. MR2207652
  • Braverman, Michael Sh. Independent random variables and rearrangement invariant spaces. London Mathematical Society Lecture Note Series, 194. Cambridge University Press, Cambridge, 1994. viii+116 pp. ISBN: 0-521-45515-4 MR1303591
  • Burkholder, D. L. Distribution function inequalities for martingales. Ann. Probability 1 (1973), 19--42. MR0365692
  • Courbage, M.; Edelman, M.; Saberi Fathi, S. M.; Zaslavsky, G. M. Problem of transport in billiards with infinite horizon. Phys. Rev. E (3) 77 (2008), no. 3, 036203, 5 pp. MR2495438
  • Chazottes, J.-R.; Gouezel, S. On almost-sure versions of classical limit theorems for dynamical systems. Probab. Theory Related Fields 138 (2007), no. 1-2, 195--234. MR2288069
  • Chazottes, Jean-Rene; Gouezel, Sebastien. Optimal concentration inequalities for dynamical systems. Comm. Math. Phys. 316 (2012), no. 3, 843--889. MR2993935
  • Jérôme Dedecker and Florence Merlevède, phMoment bounds for dependent sequences in smooth banach spaces, Preprint, 2014.
  • Feller, William. An introduction to probability theory and its applications. Vol. II. John Wiley & Sons, Inc., New York-London-Sydney 1966 xviii+636 pp. MR0210154
  • Gouezel, Sebastien. Central limit theorem and stable laws for intermittent maps. Probab. Theory Related Fields 128 (2004), no. 1, 82--122. MR2027296
  • Gouezel, Sebastien. Sharp polynomial estimates for the decay of correlations. Israel J. Math. 139 (2004), 29--65. MR2041223
  • Gouezel, Sebastien. Vitesse de décorrélation et théorèmes limites pour les applications non uniformément dilatantes, Ph.D. thesis, Université Paris Sud, 2004.
  • Gouezel, Sebastien. Limit theorems in dynamical systems using the spectral method, preprint, 2013.
  • Kato, Tosio. Perturbation theory for linear operators. Die Grundlehren der mathematischen Wissenschaften, Band 132 Springer-Verlag New York, Inc., New York 1966 xix+592 pp. MR0203473
  • Liverani, Carlangelo; Saussol, Benoit; Vaienti, Sandro. A probabilistic approach to intermittency. Ergodic Theory Dynam. Systems 19 (1999), no. 3, 671--685. MR1695915
  • Melbourne, Ian. Large and moderate deviations for slowly mixing dynamical systems. Proc. Amer. Math. Soc. 137 (2009), no. 5, 1735--1741. MR2470832
  • Melbourne, Ian; Nicol, Matthew. Large deviations for nonuniformly hyperbolic systems. Trans. Amer. Math. Soc. 360 (2008), no. 12, 6661--6676. MR2434305
  • Melbourne, Ian; Torok, Andrei. Statistical limit theorems for suspension flows. Israel J. Math. 144 (2004), 191--209. MR2121540
  • Melbourne, Ian; Terhesiu, Dalia. Operator renewal theory and mixing rates for dynamical systems with infinite measure. Invent. Math. 189 (2012), no. 1, 61--110. MR2929083
  • Melbourne, Ian; Torok, Andrei. Convergence of moments for axiom A and non-uniformly hyperbolic flows. Ergodic Theory Dynam. Systems 32 (2012), no. 3, 1091--1100. MR2995657
  • Pomeau, Yves; Manneville, Paul. Intermittent transition to turbulence in dissipative dynamical systems. Comm. Math. Phys. 74 (1980), no. 2, 189--197. MR0576270
  • Sarig, Omri. Subexponential decay of correlations. Invent. Math. 150 (2002), no. 3, 629--653. MR1946554
  • Szasz, Domokos; Varju, Tamas. Limit laws and recurrence for the planar Lorentz process with infinite horizon. J. Stat. Phys. 129 (2007), no. 1, 59--80. MR2349520
  • Stein, Elias M.; Weiss, Guido. Introduction to Fourier analysis on Euclidean spaces. Princeton Mathematical Series, No. 32. Princeton University Press, Princeton, N.J., 1971. x+297 pp. MR0304972
  • von Bahr, Bengt; Esseen, Carl-Gustav. Inequalities for the $r$th absolute moment of a sum of random variables, $1\leq r\leq 2$. Ann. Math. Statist 36 1965 299--303. MR0170407
  • Young, Lai-Sang. Statistical properties of dynamical systems with some hyperbolicity. Ann. of Math. (2) 147 (1998), no. 3, 585--650. MR1637655
  • Young, Lai-Sang. Recurrence times and rates of mixing. Israel J. Math. 110 (1999), 153--188. MR1750438


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.