Fluctuation exponents for directed polymers in the intermediate disorder regime
Timo Seppäläinen (University of Wisconsin - Madison)
Benedek Valkó (University of Wisconsin - Madison)
Abstract
We derive exact fluctuation exponents for a solvable model of one-dimensional directed polymers in random environment in the intermediate scaling regime. This regime corresponds to taking the inverse temperature to zero as the size of the system goes to infinity. The exponents satisfy the KPZ scaling relation and coincide with physical predictions.In the critical case, we recover the fluctuation exponent of the Hopf-Cole solution of the KPZ equation in equilibrium and close to equilibrium.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-28
Publication Date: September 26, 2014
DOI: 10.1214/EJP.v19-3307
References
- Alberts, Tom; Khanin, Konstantin; Quastel, Jeremy. The continuum directed random polymer. J. Stat. Phys. 154 (2014), no. 1-2, 305--326. MR3162542
- Alberts, Tom; Khanin, Konstantin; Quastel, Jeremy. The intermediate disorder regime for directed polymers in dimension $1+1$. Ann. Probab. 42 (2014), no. 3, 1212--1256. MR3189070
- Tom Alberts, Kostya Khanin, and Jeremy Quastel, phThe intermediate disorder regime for directed polymers in dimension 1+1, Phys. Rev. Lett. 105 (2010), 090603.
- Amir, Gideon; Corwin, Ivan; Quastel, Jeremy. Probability distribution of the free energy of the continuum directed random polymer in $1+1$ dimensions. Comm. Pure Appl. Math. 64 (2011), no. 4, 466--537. MR2796514
- Auffinger, Antonio; Damron, Michael. A simplified proof of the relation between scaling exponents in first-passage percolation. Ann. Probab. 42 (2014), no. 3, 1197--1211. MR3189069
- Auffinger, Antonio; Damron, Michael. The scaling relation $\chi=2\xi-1$ for directed polymers in a random environment. ALEA Lat. Am. J. Probab. Math. Stat. 10 (2013), no. 2, 857--880. MR3141825
- Baik, Jinho; Deift, Percy; Johansson, Kurt. On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc. 12 (1999), no. 4, 1119--1178. MR1682248
- Balzs, M.; Cator, E.; Seppäläinen, T. Cube root fluctuations for the corner growth model associated to the exclusion process. Electron. J. Probab. 11 (2006), no. 42, 1094--1132 (electronic). MR2268539
- Balázs, Márton; Komjáthy, Júlia; Seppäläinen, Timo. Microscopic concavity and fluctuation bounds in a class of deposition processes. Ann. Inst. Henri Poincar Probab. Stat. 48 (2012), no. 1, 151--187. MR2919202
- Márton Balázs, Jeremy Quastel, and Timo Seppäläinen, phFluctuation exponent of the KPZ/stochastic Burgers equation, J. Amer. Math. Soc. 24 (2011), no. 3, 683--708. MR2784327
- Balázs, Márton; Seppäläinen, Timo. Order of current variance and diffusivity in the asymmetric simple exclusion process. Ann. of Math. (2) 171 (2010), no. 2, 1237--1265. MR2630064
- Baryshnikov, Yu. GUEs and queues. Probab. Theory Related Fields 119 (2001), no. 2, 256--274. MR1818248
- Bernardin, Cédric. Fluctuations in the occupation time of a site in the asymmetric simple exclusion process. Ann. Probab. 32 (2004), no. 1B, 855--879. MR2039945
- Bertini, Lorenzo; Giacomin, Giambattista. Stochastic Burgers and KPZ equations from particle systems. Comm. Math. Phys. 183 (1997), no. 3, 571--607. MR1462228
- Borodin, Alexei; Corwin, Ivan. Macdonald processes. Probab. Theory Related Fields 158 (2014), no. 1-2, 225--400. MR3152785
- Borodin, Alexei; Corwin, Ivan; Ferrari, Patrik. Free energy fluctuations for directed polymers in random media in $1+1$ dimension. Comm. Pure Appl. Math. 67 (2014), no. 7, 1129--1214. MR3207195
- Borodin, Alexei; Corwin, Ivan; Remenik, Daniel. Log-gamma polymer free energy fluctuations via a Fredholm determinant identity. Comm. Math. Phys. 324 (2013), no. 1, 215--232. MR3116323
- Alexei Borodin, Ivan Corwin, and Tomohiro Sasamoto, phFrom duality to determinants for q-TASEP and ASEP, arXiv:1207.5035 (2012).
- Cator, Eric; Groeneboom, Piet. Second class particles and cube root asymptotics for Hammersley's process. Ann. Probab. 34 (2006), no. 4, 1273--1295. MR2257647
- Chatterjee, Sourav. The universal relation between scaling exponents in first-passage percolation. Ann. of Math. (2) 177 (2013), no. 2, 663--697. MR3010809
- Comets, Francis; Shiga, Tokuzo; Yoshida, Nobuo. Probabilistic analysis of directed polymers in a random environment: a review. Stochastic analysis on large scale interacting systems, 115--142, Adv. Stud. Pure Math., 39, Math. Soc. Japan, Tokyo, 2004. MR2073332
- Comets, Francis; Yoshida, Nobuo. Brownian directed polymers in random environment. Comm. Math. Phys. 254 (2005), no. 2, 257--287. MR2117626
- Corwin, Ivan. The Kardar-Parisi-Zhang equation and universality class. Random Matrices Theory Appl. 1 (2012), no. 1, 1130001, 76 pp. MR2930377
- Ivan Corwin and Alan Hammond, phKPZ line ensemble, arXiv:1312.2600 (2013).
- Corwin, Ivan; O'Connell, Neil; Sepplinen, Timo; Zygouras, Nikolaos. Tropical combinatorics and Whittaker functions. Duke Math. J. 163 (2014), no. 3, 513--563. MR3165422
- Ivan Corwin, Timo Seppäläinen, and Hao Shen, The strict-weak lattice polymer, arXiv:1409.1794 (2014).
- den Hollander, Frank. Random polymers. Lectures from the 37th Probability Summer School held in Saint-Flour, 2007. Lecture Notes in Mathematics, 1974. Springer-Verlag, Berlin, 2009. xiv+258 pp. ISBN: 978-3-642-00332-5 MR2504175
- Dufresne, Daniel. An affine property of the reciprocal Asian option process. Osaka J. Math. 38 (2001), no. 2, 379--381. MR1833627
- Gravner, Janko; Tracy, Craig A.; Widom, Harold. Limit theorems for height fluctuations in a class of discrete space and time growth models. J. Statist. Phys. 102 (2001), no. 5-6, 1085--1132. MR1830441
- Hairer, Martin. Solving the KPZ equation. Ann. of Math. (2) 178 (2013), no. 2, 559--664. MR3071506
- Henley, Christopher L.; Lipowsky, Reinhard. Interface roughening in two-dimensional quasicrystals. Phys. Rev. Lett. 59 (1987), no. 15, 1679--1682. MR0909444
- Johansson, Kurt. Shape fluctuations and random matrices. Comm. Math. Phys. 209 (2000), no. 2, 437--476. MR1737991
- K. Kardar, G. Parisi, and Y. Zhang, phDynamic scaling of growing interfaces, Phys. Rev. Lett. 56 (1986), 889--892.
- J. Krug and H. Spohn, phKinetic roughening of growing surfaces, Solids far from equilibrium (C. Godrèche, ed.), Collection Aléa-Saclay: Monographs and Texts in Statistical Physics, 1, Cambridge University Press, Cambridge, 1992, pp. 117--130.
- Landim, C.; Quastel, J.; Salmhofer, M.; Yau, H.-T. Superdiffusivity of asymmetric exclusion process in dimensions one and two. Comm. Math. Phys. 244 (2004), no. 3, 455--481. MR2034485
- Ledoux, M. Deviation inequalities on largest eigenvalues. Geometric aspects of functional analysis, 167--219, Lecture Notes in Math., 1910, Springer, Berlin, 2007. MR2349607
- G. Moreno Flores, J. Quastel, and D. Remenik, phKPZ scaling for directed polymers and q-TASEP, Preprint.
- Moriarty, J.; O'Connell, N. On the free energy of a directed polymer in a Brownian environment. Markov Process. Related Fields 13 (2007), no. 2, 251--266. MR2343849
- O'Connell, Neil. Directed polymers and the quantum Toda lattice. Ann. Probab. 40 (2012), no. 2, 437--458. MR2952082
- Neil O'Connell and Janosch Ortmann, phTracy-Widom asymptotics for a random polymer model with gamma-distributed weights, arXiv:1408.5326 (2014).
- O'Connell, Neil; Yor, Marc. Brownian analogues of Burke's theorem. Stochastic Process. Appl. 96 (2001), no. 2, 285--304. MR1865759
- Quastel, Jeremy; Valkó, Benedek. $t^ {1/3}$ Superdiffusivity of finite-range asymmetric exclusion processes on $\Bbb Z$. Comm. Math. Phys. 273 (2007), no. 2, 379--394. MR2318311
- Quastel, Jeremy; Valkó, Benedek. A note on the diffusivity of finite-range asymmetric exclusion processes on $\Bbb Z$. In and out of equilibrium. 2, 543--549, Progr. Probab., 60, Birkhuser, Basel, 2008. MR2477398
- Quastel, Jeremy; Valkó, Benedek. Diffusivity of lattice gases. Arch. Ration. Mech. Anal. 210 (2013), no. 1, 269--320. MR3073154
- Seppäläinen, Timo. Scaling for a one-dimensional directed polymer with boundary conditions. Ann. Probab. 40 (2012), no. 1, 19--73. MR2917766
- Seppäläinen, Timo; Valkó, Benedek. Bounds for scaling exponents for a $1+1$ dimensional directed polymer in a Brownian environment. ALEA Lat. Am. J. Probab. Math. Stat. 7 (2010), 451--476. MR2741194
- Herbert Spohn, phStochastic integrability and the KPZ equation, IAMP News Bulletin (2012), 5--9.
- Tracy, Craig A.; Widom, Harold. A Fredholm determinant representation in ASEP. J. Stat. Phys. 132 (2008), no. 2, 291--300. MR2415104
- Yau, Horng-Tzer. $(\log t)^ {2/3}$ law of the two dimensional asymmetric simple exclusion process. Ann. of Math. (2) 159 (2004), no. 1, 377--405. MR2052358
This work is licensed under a Creative Commons Attribution 3.0 License.