The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off

References

  • Blumenthal, R. M.; Getoor, R. K. Markov processes and potential theory. Pure and Applied Mathematics, Vol. 29 Academic Press, New York-London 1968 x+313 pp. MR0264757
  • Bertoin, Jean. Random fragmentation and coagulation processes. Cambridge Studies in Advanced Mathematics, 102. Cambridge University Press, Cambridge, 2006. viii+280 pp. ISBN: 978-0-521-86728-3; 0-521-86728-2 MR2253162
  • Y. Chang, Multi-occupation field generates the Borel sigma-field of loops. arXiv:1309.1558
  • C. Dellacherie, and P.-A. Meyer, (1978). Probabilities et Potential. Paris: Hermann.
  • Dellacherie, Claude; Meyer, Paul-Andre. Probabilities and potential. B. Theory of martingales. Translated from the French by J. P. Wilson. North-Holland Mathematics Studies, 72. North-Holland Publishing Co., Amsterdam, 1982. xvii+463 pp. ISBN: 0-444-86526-8 MR0745449
  • Dynkin, E. B. Minimal excessive measures and functions. Trans. Amer. Math. Soc. 258 (1980), no. 1, 217--244. MR0554330
  • Dynkin, E. B. Local times and quantum fields. Seminar on stochastic processes, 1983 (Gainesville, Fla., 1983), 69--83, Progr. Probab. Statist., 7, Birkhauser Boston, Boston, MA, 1984. MR0902412
  • Dynkin, E. B. Gaussian and non-Gaussian random fields associated with Markov processes. J. Funct. Anal. 55 (1984), no. 3, 344--376. MR0734803
  • Eisenbaum, Nathalie; Kaspi, Haya. On permanental processes. Stochastic Process. Appl. 119 (2009), no. 5, 1401--1415. MR2513113
  • Fitzsimmons, Pat; Pitman, Jim; Yor, Marc. Markovian bridges: construction, Palm interpretation, and splicing. Seminar on Stochastic Processes, 1992 (Seattle, WA, 1992), 101--134, Progr. Probab., 33, Birkhauser Boston, Boston, MA, 1993. MR1278079
  • Getoor, R. K. Some remarks on continuous additive functionals. Ann. Math. Statist 38 1967 1655--1660. MR0216573
  • Le Jan, Yves. Markov loops and renormalization. Ann. Probab. 38 (2010), no. 3, 1280--1319. MR2675000
  • Le Jan, Yves. Markov paths, loops and fields. Lectures from the 38th Probability Summer School held in Saint-Flour, 2008. Lecture Notes in Mathematics, 2026. Ecole d'ete de Probabilites de Saint-Flour. [Saint-Flour Probability Summer School] Springer, Heidelberg, 2011. viii+124 pp. ISBN: 978-3-642-21215-4 MR2815763
  • Y. Le Jan, M. B. Marcus and J. Rosen, Permanental fields, loop soups and continuous additive functionals, Ann. Probab., to appear. arxiv.org/pdf/1209.1804.pdf
  • Y. Le Jan, M. B. Marcus and J. Rosen, Intersection local times, loop soups and permanental Wick powers. arxiv.org/pdf/1308.2701.pdf
  • Kingman, J. F. C. Poisson processes. Oxford Studies in Probability, 3. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993. viii+104 pp. ISBN: 0-19-853693-3 MR1207584
  • Lawler, Gregory F.; Limic, Vlada. Random walk: a modern introduction. Cambridge Studies in Advanced Mathematics, 123. Cambridge University Press, Cambridge, 2010. xii+364 pp. ISBN: 978-0-521-51918-2 MR2677157
  • Lawler, Gregory F. Conformally invariant processes in the plane. Mathematical Surveys and Monographs, 114. American Mathematical Society, Providence, RI, 2005. xii+242 pp. ISBN: 0-8218-3677-3 MR2129588
  • Lawler, Gregory F.; Trujillo Ferreras, Jose A. Random walk loop soup. Trans. Amer. Math. Soc. 359 (2007), no. 2, 767--787 (electronic). MR2255196
  • Lawler, Gregory F.; Werner, Wendelin. The Brownian loop soup. Probab. Theory Related Fields 128 (2004), no. 4, 565--588. MR2045953
  • T. Lupu, Poissonian ensembles of loops of one-dimensional diffusions. arxiv.org/pdf/1302.3773.pdf
  • T. Lupu, From loop clusters of parameter 1 øver 2 to the Gaussian free field. arxiv.org/pdf/1402.0298v2.pdf
  • Marcus, Michael B.; Rosen, Jay. Markov processes, Gaussian processes, and local times. Cambridge Studies in Advanced Mathematics, 100. Cambridge University Press, Cambridge, 2006. x+620 pp. ISBN: 978-0-521-86300-1; 0-521-86300-7 MR2250510
  • Sharpe, Michael. General theory of Markov processes. Pure and Applied Mathematics, 133. Academic Press, Inc., Boston, MA, 1988. xii+419 pp. ISBN: 0-12-639060-6 MR0958914
  • K. Symanzik, Euclidean quantum field theory, In Local Quantum Theory, (R. Jost, ed.). pp. 152--226. Acad. Press, New York, (1967).
  • Sznitman, Alain-Sol. Topics in occupation times and Gaussian free fields. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zurich, 2012. viii+114 pp. ISBN: 978-3-03719-109-5 MR2932978
  • Vere-Jones, D. Alpha-permanents and their applications to multivariate gamma, negative binomial and ordinary binomial distributions. New Zealand J. Math. 26 (1997), no. 1, 125--149. MR1450811


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.