The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off

References

  • Berestycki, Julien; Berestycki, Nathanaël; Limic, Vlada. A small-time coupling between $\Lambda$-coalescents and branching processes. Ann. Appl. Probab. 24 (2014), no. 2, 449--475. MR3178488
  • Berestycki, Julien; Berestycki, Nathanaël; Schweinsberg, Jason. Beta-coalescents and continuous stable random trees. Ann. Probab. 35 (2007), no. 5, 1835--1887. MR2349577
  • Bertoin, Jean. Lévy processes. Cambridge Tracts in Mathematics, 121. Cambridge University Press, Cambridge, 1996. x+265 pp. ISBN: 0-521-56243-0 MR1406564
  • Bertoin, Jean. Random fragmentation and coagulation processes. Cambridge Studies in Advanced Mathematics, 102. Cambridge University Press, Cambridge, 2006. viii+280 pp. ISBN: 978-0-521-86728-3; 0-521-86728-2 MR2253162
  • Bertoin, Jean; Le Gall, Jean-François. The Bolthausen-Sznitman coalescent and the genealogy of continuous-state branching processes. Probab. Theory Related Fields 117 (2000), no. 2, 249--266. MR1771663
  • Bertoin, Jean; Le Gall, Jean-François. Stochastic flows associated to coalescent processes. Probab. Theory Related Fields 126 (2003), no. 2, 261--288. MR1990057
  • Bertoin, Jean; Le Gall, Jean-Francois. Stochastic flows associated to coalescent processes. III. Limit theorems. Illinois J. Math. 50 (2006), no. 1-4, 147--181 (electronic). MR2247827
  • Birkner, Matthias; Blath, Jochen; Capaldo, Marcella; Etheridge, Alison; Möhle, Martin; Schweinsberg, Jason; Wakolbinger, Anton. Alpha-stable branching and beta-coalescents. Electron. J. Probab. 10 (2005), no. 9, 303--325 (electronic). MR2120246
  • Birkner, Matthias; Blath, Jochen; Möhle, Martin; Steinruecken, Matthias; Tams, Johanna. A modified lookdown construction for the Xi-Fleming-Viot process with mutation and populations with recurrent bottlenecks. ALEA Lat. Am. J. Probab. Math. Stat. 6 (2009), 25--61. MR2485878
  • Bolthausen, Erwin; Sznitman, Alain-Sol. On Ruelle's probability cascades and an abstract cavity method. Comm. Math. Phys. 197 (1998), no. 2, 247--276. MR1652734
  • Dawson, Donald A. Measure-valued Markov processes. École d'Été de Probabilités de Saint-Flour XXI—1991, 1--260, Lecture Notes in Math., 1541, Springer, Berlin, 1993. MR1242575
  • Donnelly, Peter; Kurtz, Thomas G. Particle representations for measure-valued population models. Ann. Probab. 27 (1999), no. 1, 166--205. MR1681126
  • Duquesne, Thomas; Labbé, Cyril. On the Eve property for CSBP, Electronic Journal of Probability 19 (2014), no. 6, 1--31.
  • Etheridge, Alison M. An introduction to superprocesses. University Lecture Series, 20. American Mathematical Society, Providence, RI, 2000. xii+187 pp. ISBN: 0-8218-2706-5 MR1779100
  • Foucart, Clément. Generalized Fleming-Viot processes with immigration via stochastic flows of partitions. ALEA Lat. Am. J. Probab. Math. Stat. 9 (2012), no. 2, 451--472. MR3069373
  • Freeman, Nic. The number of non-singleton blocks in Lambda-coalescents with dust, arXiv:1111.1660 (2011).
  • Gnedin, Alexander; Iksanov, Alexander; Marynych, Alexander. On $\Lambda$-coalescents with dust component. J. Appl. Probab. 48 (2011), no. 4, 1133--1151. MR2896672
  • Gufler, Stephan. Lookdown representation for tree-valued Fleming-Viot processes, arXiv:1404.3682 (2014).
  • Kallenberg, Olav. Canonical representations and convergence criteria for processes with interchangeable increments. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 27 (1973), 23--36. MR0394842
  • Kingman, J. F. C. The coalescent. Stochastic Process. Appl. 13 (1982), no. 3, 235--248. MR0671034
  • Labbé, Cyril. Genealogy of flows of continuous-state branching processes via flows of partitions and the Eve property, Annales de l'Institut Henri Poincaré 50 (2014), no. 3, pp. 732 -- 769.
  • Lamperti, John. An occupation time theorem for a class of stochastic processes. Trans. Amer. Math. Soc. 88 1958 380--387. MR0094863
  • Le Gall, Jean-François. Spatial branching processes, random snakes and partial differential equations. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 1999. x+163 pp. ISBN: 3-7643-6126-3 MR1714707
  • Pfaffelhuber, Peter; Wakolbinger, Anton. The process of most recent common ancestors in an evolving coalescent. Stochastic Process. Appl. 116 (2006), no. 12, 1836--1859. MR2307061
  • Pitman, Jim. Coalescents with multiple collisions. Ann. Probab. 27 (1999), no. 4, 1870--1902. MR1742892
  • Sagitov, Serik. The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Probab. 36 (1999), no. 4, 1116--1125. MR1742154
  • Schweinsberg, Jason. A necessary and sufficient condition for the $\Lambda$-coalescent to come down from infinity. Electron. Comm. Probab. 5 (2000), 1--11 (electronic). MR1736720
  • Schweinsberg, Jason. Coalescents with simultaneous multiple collisions. Electron. J. Probab. 5 (2000), Paper no. 12, 50 pp. (electronic). MR1781024


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.