From flows of $\Lambda$-Fleming-Viot processes to lookdown processes via flows of partitions
Abstract
The goal of this paper is to unify the lookdown representation and the stochastic flow of bridges, which are two approaches to construct the $\Lambda$-Fleming-Viot process along with its genealogy. First we introduce the stochastic flow of partitions and show that it provides a new formulation of the lookdown representation. Second we study the asymptotic behaviour of the $\Lambda$-Fleming-Viot process and we provide sufficient conditions for the existence of an infinite sequence of Eves that generalise the primitive Eve of Bertoin and Le Gall. Finally under the condition that this infinite sequence of Eves does exist, we construct the lookdown representation pathwise from a flow of bridges.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-49
Publication Date: June 25, 2014
DOI: 10.1214/EJP.v19-3192
References
- Berestycki, Julien; Berestycki, Nathanaël; Limic, Vlada. A small-time coupling between $\Lambda$-coalescents and branching processes. Ann. Appl. Probab. 24 (2014), no. 2, 449--475. MR3178488
- Berestycki, Julien; Berestycki, Nathanaël; Schweinsberg, Jason. Beta-coalescents and continuous stable random trees. Ann. Probab. 35 (2007), no. 5, 1835--1887. MR2349577
- Bertoin, Jean. Lévy processes. Cambridge Tracts in Mathematics, 121. Cambridge University Press, Cambridge, 1996. x+265 pp. ISBN: 0-521-56243-0 MR1406564
- Bertoin, Jean. Random fragmentation and coagulation processes. Cambridge Studies in Advanced Mathematics, 102. Cambridge University Press, Cambridge, 2006. viii+280 pp. ISBN: 978-0-521-86728-3; 0-521-86728-2 MR2253162
- Bertoin, Jean; Le Gall, Jean-François. The Bolthausen-Sznitman coalescent and the genealogy of continuous-state branching processes. Probab. Theory Related Fields 117 (2000), no. 2, 249--266. MR1771663
- Bertoin, Jean; Le Gall, Jean-François. Stochastic flows associated to coalescent processes. Probab. Theory Related Fields 126 (2003), no. 2, 261--288. MR1990057
- Bertoin, Jean; Le Gall, Jean-Francois. Stochastic flows associated to coalescent processes. III. Limit theorems. Illinois J. Math. 50 (2006), no. 1-4, 147--181 (electronic). MR2247827
- Birkner, Matthias; Blath, Jochen; Capaldo, Marcella; Etheridge, Alison; Möhle, Martin; Schweinsberg, Jason; Wakolbinger, Anton. Alpha-stable branching and beta-coalescents. Electron. J. Probab. 10 (2005), no. 9, 303--325 (electronic). MR2120246
- Birkner, Matthias; Blath, Jochen; Möhle, Martin; Steinruecken, Matthias; Tams, Johanna. A modified lookdown construction for the Xi-Fleming-Viot process with mutation and populations with recurrent bottlenecks. ALEA Lat. Am. J. Probab. Math. Stat. 6 (2009), 25--61. MR2485878
- Bolthausen, Erwin; Sznitman, Alain-Sol. On Ruelle's probability cascades and an abstract cavity method. Comm. Math. Phys. 197 (1998), no. 2, 247--276. MR1652734
- Dawson, Donald A. Measure-valued Markov processes. École d'Été de Probabilités de Saint-Flour XXI—1991, 1--260, Lecture Notes in Math., 1541, Springer, Berlin, 1993. MR1242575
- Donnelly, Peter; Kurtz, Thomas G. Particle representations for measure-valued population models. Ann. Probab. 27 (1999), no. 1, 166--205. MR1681126
- Duquesne, Thomas; Labbé, Cyril. On the Eve property for CSBP, Electronic Journal of Probability 19 (2014), no. 6, 1--31.
- Etheridge, Alison M. An introduction to superprocesses. University Lecture Series, 20. American Mathematical Society, Providence, RI, 2000. xii+187 pp. ISBN: 0-8218-2706-5 MR1779100
- Foucart, Clément. Generalized Fleming-Viot processes with immigration via stochastic flows of partitions. ALEA Lat. Am. J. Probab. Math. Stat. 9 (2012), no. 2, 451--472. MR3069373
- Freeman, Nic. The number of non-singleton blocks in Lambda-coalescents with dust, arXiv:1111.1660 (2011).
- Gnedin, Alexander; Iksanov, Alexander; Marynych, Alexander. On $\Lambda$-coalescents with dust component. J. Appl. Probab. 48 (2011), no. 4, 1133--1151. MR2896672
- Gufler, Stephan. Lookdown representation for tree-valued Fleming-Viot processes, arXiv:1404.3682 (2014).
- Kallenberg, Olav. Canonical representations and convergence criteria for processes with interchangeable increments. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 27 (1973), 23--36. MR0394842
- Kingman, J. F. C. The coalescent. Stochastic Process. Appl. 13 (1982), no. 3, 235--248. MR0671034
- Labbé, Cyril. Genealogy of flows of continuous-state branching processes via flows of partitions and the Eve property, Annales de l'Institut Henri Poincaré 50 (2014), no. 3, pp. 732 -- 769.
- Lamperti, John. An occupation time theorem for a class of stochastic processes. Trans. Amer. Math. Soc. 88 1958 380--387. MR0094863
- Le Gall, Jean-François. Spatial branching processes, random snakes and partial differential equations. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 1999. x+163 pp. ISBN: 3-7643-6126-3 MR1714707
- Pfaffelhuber, Peter; Wakolbinger, Anton. The process of most recent common ancestors in an evolving coalescent. Stochastic Process. Appl. 116 (2006), no. 12, 1836--1859. MR2307061
- Pitman, Jim. Coalescents with multiple collisions. Ann. Probab. 27 (1999), no. 4, 1870--1902. MR1742892
- Sagitov, Serik. The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Probab. 36 (1999), no. 4, 1116--1125. MR1742154
- Schweinsberg, Jason. A necessary and sufficient condition for the $\Lambda$-coalescent to come down from infinity. Electron. Comm. Probab. 5 (2000), 1--11 (electronic). MR1736720
- Schweinsberg, Jason. Coalescents with simultaneous multiple collisions. Electron. J. Probab. 5 (2000), Paper no. 12, 50 pp. (electronic). MR1781024
This work is licensed under a Creative Commons Attribution 3.0 License.