On the distances between probability density functions

Vlad Bally (Université Paris-Est Marne-la-Vallée)
Lucia Caramellino (Università di Roma Tor Vergata)

Abstract


We give estimates of the distance between the densities of the laws of two functionals $F$ and $G$ on the Wiener space in terms of the Malliavin-Sobolev norm of $F-G.$ We actually consider a  more general framework which allows one to treat with similar (Malliavin type)methods functionals of a Poisson point measure (solutions of jump type stochastic equations). We use the above estimates in order to obtain a criterion which ensures that convergence in distribution implies convergence in total variation distance; in particular, if the functionals at hand are absolutely continuous, this implies convergence in $L^{1}$ of the densities.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-33

Publication Date: December 11, 2014

DOI: 10.1214/EJP.v19-3175

References

  • Bally, Vlad. An elementary introduction to Malliavin calculus. Research report INRIA n. 00071868
  • Bally, Vlad; Caramellino, Lucia. Riesz transform and integration by parts formulas for random variables. Stochastic Process. Appl. 121 (2011), no. 6, 1332--1355. MR2794979
  • Bally, Vlad; Caramellino, Lucia. Positivity and lower bounds for the density of Wiener functionals. Potential Anal. 39 (2013), no. 2, 141--168. MR3078335
  • textscV. Bally, L. Caramellino (2013). Convergence in total variation and CLT for Wiener functionals. arXiv:1407.0896
  • Bally, Vlad; Clément, Emmanuelle. Integration by parts formula and applications to equations with jumps. Probab. Theory Related Fields 151 (2011), no. 3-4, 613--657. MR2851695
  • Bally, Vlad; Clément, Emmanuelle. Integration by parts formula with respect to jump times for stochastic differential equations. Stochastic analysis 2010, 7--29, Springer, Heidelberg, 2011. MR2789077
  • Bally, V.; Talay, D. The law of the Euler scheme for stochastic differential equations. I. Convergence rate of the distribution function. Probab. Theory Related Fields 104 (1996), no. 1, 43--60. MR1367666
  • Bally, Vlad; Talay, Denis. The law of the Euler scheme for stochastic differential equations. II. Convergence rate of the density. Monte Carlo Methods Appl. 2 (1996), no. 2, 93--128. MR1401964
  • Bichteler, Klaus; Gravereaux, Jean-Bernard; Jacod, Jean. Malliavin calculus for processes with jumps. Stochastics Monographs, 2. Gordon and Breach Science Publishers, New York, 1987. x+161 pp. ISBN: 2-88124-185-9 MR1008471
  • Bouleau, Nicolas; Hirsch, Francis. Dirichlet forms and analysis on Wiener space. de Gruyter Studies in Mathematics, 14. Walter de Gruyter & Co., Berlin, 1991. x+325 pp. ISBN: 3-11-012919-1 MR1133391
  • Fournier, Nicolas. Jumping SDEs: absolute continuity using monotonicity. Stochastic Process. Appl. 98 (2002), no. 2, 317--330. MR1887538
  • Guyon, Julien. Euler scheme and tempered distributions. Stochastic Process. Appl. 116 (2006), no. 6, 877--904. MR2254663
  • Ikeda, Nobuyuki; Watanabe, Shinzo. Stochastic differential equations and diffusion processes. Second edition. North-Holland Mathematical Library, 24. North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989. xvi+555 pp. ISBN: 0-444-87378-3 MR1011252
  • Malicet, D.; Poly, G. Properties of convergence in Dirichlet structures. J. Funct. Anal. 264 (2013), no. 9, 2077--2096. MR3029147
  • Nourdin, Ivan; Peccati, Giovanni. Normal approximations with Malliavin calculus. From Stein's method to universality. Cambridge Tracts in Mathematics, 192. Cambridge University Press, Cambridge, 2012. xiv+239 pp. ISBN: 978-1-107-01777-1 MR2962301
  • Nourdin, Ivan; Poly, Guillaume. Convergence in total variation on Wiener chaos. Stochastic Process. Appl. 123 (2013), no. 2, 651--674. MR3003367
  • Nualart, David. The Malliavin calculus and related topics. Second edition. Probability and its Applications (New York). Springer-Verlag, Berlin, 2006. xiv+382 pp. ISBN: 978-3-540-28328-7; 3-540-28328-5 MR2200233
  • Nourdin, Ivan; Nualart, David; Poly, Guillaume. Absolute continuity and convergence of densities for random vectors on Wiener chaos. Electron. J. Probab. 18 (2013), no. 22, 19 pp. MR3035750


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.