The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off

References

  • Krylov, N. V. Introduction to the theory of random processes. Graduate Studies in Mathematics, 43. American Mathematical Society, Providence, RI, 2002. xii+230 pp. ISBN: 0-8218-2985-8 MR1885884
  • Adler, Robert J.; Taylor, Jonathan E. Random fields and geometry. Springer Monographs in Mathematics. Springer, New York, 2007. xviii+448 pp. ISBN: 978-0-387-48112-8 MR2319516
  • Bramson, Maury; Zeitouni, Ofer. Tightness of the recentered maximum of the two-dimensional discrete Gaussian free field. Comm. Pure Appl. Math. 65 (2012), no. 1, 1--20. MR2846636
  • Ding, Jian. Exponential and double exponential tails for maximum of two-dimensional discrete Gaussian free field. Probab. Theory Related Fields 157 (2013), no. 1-2, 285--299. MR3101848 http://arxiv.org/abs/1105.5833
  • M. Bramson, J. Ding and O. Zeitouni. Convergence in law of the maximum of the two-dimensional discrete Gaussian free field, 2013. http://arxiv.org/abs/1301.6669
  • Bolthausen, Erwin; Deuschel, Jean-Dominique; Giacomin, Giambattista. Entropic repulsion and the maximum of the two-dimensional harmonic crystal. Ann. Probab. 29 (2001), no. 4, 1670--1692. MR1880237
  • Daviaud, Olivier. Extremes of the discrete two-dimensional Gaussian free field. Ann. Probab. 34 (2006), no. 3, 962--986. MR2243875
  • Hu, Xiaoyu; Miller, Jason; Peres, Yuval. Thick points of the Gaussian free field. Ann. Probab. 38 (2010), no. 2, 896--926. MR2642894
  • Dynkin, E. B. Markov processes and random fields. Bull. Amer. Math. Soc. (N.S.) 3 (1980), no. 3, 975--999. MR0585179
  • Sheffield, Scott. Gaussian free fields for mathematicians. Probab. Theory Related Fields 139 (2007), no. 3-4, 521--541. MR2322706
  • Duplantier, Bertrand; Rhodes, Remi; Sheffield, Scott; Vargas, Vincent. Critical Gaussian multiplicative chaos: Convergence of the derivative martingale. Ann. Probab. 42 (2014), no. 5, 1769--1808. MR3262492 http://arxiv.org/abs/1206.1671
  • T. Madaule. Maximum of a log-correlated Gaussian field, 2013. http://arxiv.org/abs/1307.1365
  • T. Madaule, R. Rhodes and V. Vargas. Glassy phase and freezing of log-correlated Gaussian potentials. http://arxiv.org/abs/1310.5574
  • Adler, Robert J. An introduction to continuity, extrema, and related topics for general Gaussian processes. Institute of Mathematical Statistics Lecture Notes—Monograph Series, 12. Institute of Mathematical Statistics, Hayward, CA, 1990. x+160 pp. ISBN: 0-940600-17-X MR1088478
  • Ding, Jian; Zeitouni, Ofer. Extreme values for two-dimensional discrete Gaussian free field. Ann. Probab. 42 (2014), no. 4, 1480--1515. MR3262484 http://arxiv.org/abs/1206.0346
  • Karatzas, Ioannis; Shreve, Steven E. Brownian motion and stochastic calculus. Graduate Texts in Mathematics, 113. Springer-Verlag, New York, 1988. xxiv+470 pp. ISBN: 0-387-96535-1 MR0917065


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.