Local limits of conditioned Galton-Watson trees: the condensation case

Romain Abraham (Université d'Orléans)
Jean-François Delmas (Université Paris-Est)

Abstract


We  provide a complete picture of the local convergence of critical or subcritical Galton-Watson tree conditioned on having a large number of individuals with out-degree in a given set. The generic case, where the limit is a random tree with an infinite spine has been treated in a previous paper. We focus here on the  non-generic case, where the limit is a random tree with a node with  infinite out-degree. This case corresponds to the so-called condensation phenomenon.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-29

Publication Date: June 27, 2014

DOI: 10.1214/EJP.v19-3164

References

  • Abraham, Romain; Delmas Jean-Fran&ccdil cois. Local limits of conditioned galton-watson trees: the infinite spine case. Elec. J. of Probab., 19:1--19, 2014.
  • Aldous, David. The continuum random tree. III. Ann. Probab. 21 (1993), no. 1, 248--289. MR1207226
  • Billingsley, Patrick. Convergence of probability measures. Second edition. Wiley Series in Probability and Statistics: Probability and Statistics. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1999. x+277 pp. ISBN: 0-471-19745-9 MR1700749
  • Curien, Nicolas; Kortchemski, Igor. Random non-crossing plane configurations: a conditioned Galton-Watson tree approach. Random Struct. and Alg., To appear, 2014.
  • Dwass, Meyer. The total progeny in a branching process and a related random walk. J. Appl. Probability 6 1969 682--686. MR0253433
  • Geiger, Jochen; Kauffmann, Lars. The shape of large Galton-Watson trees with possibly infinite variance. Random Structures Algorithms 25 (2004), no. 3, 311--335. MR2086163
  • Janson, Svante. Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation. Probab. Surv. 9 (2012), 103--252. MR2908619
  • Jonsson, Thordur; Stefánsson, Sigurdur Örn. Condensation in nongeneric trees. J. Stat. Phys. 142 (2011), no. 2, 277--313. MR2764126
  • Kallenberg, Olav. Foundations of modern probability. Probability and its Applications (New York). Springer-Verlag, New York, 1997. xii+523 pp. ISBN: 0-387-94957-7 MR1464694
  • Kemeny, John G. A probability limit theorem requiring no moments. Proc. Amer. Math. Soc. 10 1959 607--612. MR0107292
  • Kennedy, Douglas P. The Galton-Watson process conditioned on the total progeny. J. Appl. Probability 12 (1975), no. 4, 800--806. MR0386042
  • Kesten, Harry. Subdiffusive behavior of random walk on a random cluster. Ann. Inst. H. Poincaré Probab. Statist. 22 (1986), no. 4, 425--487. MR0871905
  • Kortchemski, Igor. Invariance principles for Galton-Watson trees conditioned on the number of leaves. Stochastic Process. Appl. 122 (2012), no. 9, 3126--3172. MR2946438
  • Kortchemski, Igor. Limit theorems for conditioned non-generic galton-watson trees. Ann. de l'Inst. Henri Poincaré, To appear, 2014.
  • Minami, Nariyuki. On the number of vertices with a given degree in a Galton-Watson tree. Adv. in Appl. Probab. 37 (2005), no. 1, 229--264. MR2135161
  • Neveu, Jacques. Sur le théorème ergodique de Chung-Erdős. (French) C. R. Acad. Sci. Paris 257 1963 2953--2955. MR0159362
  • Neveu, Jacques. Arbres et processus de Galton-Watson. (French) [Galton-Watson trees and processes] Ann. Inst. H. Poincaré Probab. Statist. 22 (1986), no. 2, 199--207. MR0850756
  • Rizzolo, Douglas. Scaling limits of Markov branching trees and Galton-Watson trees conditioned on the number of vertices with out-degree in a given set. Ann. de l'Inst. Henri Poincaré, To appear, 2014.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.