Non-trivial linear bounds for a random walk driven by a simple symmetric exclusion process
Abstract
Linear bounds are obtained for the displacement of a random walk in a dynamic random environment given by a one-dimensional simple symmetric exclusion process in equilibrium. The proof uses an adaptation of multiscale renormalization methods of Kesten and Sidoravicius.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-18
Publication Date: June 9, 2014
DOI: 10.1214/EJP.v19-3159
References
- L. Avena, Random Walks in Dynamic Random Environments, PhD-thesis, Leiden University, 26 October 2010.
- L. Avena, T. Franco, M. Jara and F. Völlering, Symmetric exclusion as a random environment: hydrodynamic limits, to appear in Ann. Inst. H. Poincaré Probab. Statist., arXiv:1211.3667.
- Avena, Luca; dos Santos, Renato Soares; Völlering, Florian. Transient random walk in symmetric exclusion: limit theorems and an Einstein relation. ALEA Lat. Am. J. Probab. Math. Stat. 10 (2013), no. 2, 693--709. MR3108811
- Chow, Yuan Shih; Teicher, Henry. Probability theory. Independence, interchangeability, martingales. Second edition. Springer Texts in Statistics. Springer-Verlag, New York, 1988. xviii+467 pp. ISBN: 0-387-96695-1 MR0953964
- Grimmett, Geoffrey. Percolation. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 321. Springer-Verlag, Berlin, 1999. xiv+444 pp. ISBN: 3-540-64902-6 MR1707339
- M. Hilário, F. den Hollander, R.S. dos Santos, V. Sidoravicius and A. Teixeira, Random walk on random walks, arXiv:1401.4498.
- F. den Hollander, H. Kesten and V. Sidoravicius, Random walk in a high density dynamic random environment, to appear in Indagationes Mathematicae, arXiv:1305.0923.
- F. den Hollander and R. dos Santos, Scaling of a random walk on a supercritical contact process, to appear in Ann. Inst. H. Poincaré Probab. Statist., arXiv:1209.1511.
- F. Huveneers and F. Simenhaus, Random walk driven by simple exclusion process, arXiv:1404.4187.
- R.S. dos Santos, Some case studies of random walks in dynamic random environments, PhD-thesis, Leiden University, December 2012.
- Kesten, Harry; Sidoravicius, Vladas. Branching random walk with catalysts. Electron. J. Probab. 8 (2003), no. 5, 51 pp. (electronic). MR1961167
- Kesten, Harry; Sidoravicius, Vladas. The spread of a rumor or infection in a moving population. Ann. Probab. 33 (2005), no. 6, 2402--2462. MR2184100
- Lawler, Gregory F.; Limic, Vlada. Random walk: a modern introduction. Cambridge Studies in Advanced Mathematics, 123. Cambridge University Press, Cambridge, 2010. xii+364 pp. ISBN: 978-0-521-51918-2 MR2677157
- Liggett, Thomas M. Interacting particle systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 276. Springer-Verlag, New York, 1985. xv+488 pp. ISBN: 0-387-96069-4 MR0776231
- Newman, C. M.; Wright, A. L. Associated random variables and martingale inequalities. Z. Wahrsch. Verw. Gebiete 59 (1982), no. 3, 361--371. MR0721632
- Zeitouni, Ofer. Random walks in random environment. Lectures on probability theory and statistics, 189--312, Lecture Notes in Math., 1837, Springer, Berlin, 2004. MR2071631
This work is licensed under a Creative Commons Attribution 3.0 License.