Computation of Greeks using Malliavin's calculus in jump type market models

Marie Pierre Bavouzet (INRIA Rocquencourt, MATHFI project)
Marouen Messaoud (IXIS and INRIA Rocquencourt)


We use the Malliavin calculus for Poisson processes in order to compute sensitivities for European and Asian options with underlying following a jump type diffusion. The main point is to settle an integration by parts formula (similar to the one in the Malliavin calculus) for a general multidimensional random variable which has an absolutely continuous law with differentiable density. We give an explicit expression of the differential operators involved in this formula and this permits to simulate them and consequently to run a Monte Carlo algorithm

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 276-300

Publication Date: March 31, 2006

DOI: 10.1214/EJP.v11-314


  1. F. Biagini, B.0ksendal, A. Sulem, and N. Wallner. An introduction to white noise and Malliavin calculus for fractional Brownian motion. To appear in Proc. Royal Soc. London. 35 pages, 2003.
  2. Bichteler, Klaus; Gravereaux, Jean-Bernard; Jacod, Jean. Malliavin calculus for processes with jumps. Stochastics Monographs, 2. Gordon and Breach Science Publishers, New York, 1987. x+161 pp. ISBN: 2-88124-185-9 MR1008471 (90h:60056)
  3. Bouleau, Nicolas. Error calculus for finance and physics: the language of Dirichlet forms. de Gruyter Expositions in Mathematics, 37. Walter de Gruyter & Co., Berlin, 2003. x+234 pp. ISBN: 3-11-018036-7 MR2079474 (2005g:60003)
  4. Eric A. Carlen and tienne Pardoux. Differential calculus and integration by parts on Poisson space. Kluwer ed, Stochastics, algebra and analysis in classical and quantum dynamics, pages 63--73, 1990.
  5. Cont, Rama; Tankov, Peter. Financial modelling with jump processes. Chapman & Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton, FL, 2004. xvi+535 pp. ISBN: 1-5848-8413-4 MR2042661 (2004m:91004)
  6. M.H.A. Davis and M.~Johansson. Malliavin Monte Carlo Greeks for jump diffusions. Preprint submitted to Stochastic Processes and their Applications, 2004.
  7. B. Oksendal. An introduction to Malliavin calculus with applications to economics. Lecture notes, Norwegian School of Economics and Business Administration, Norway, 1996.
  8. E.Fourni, J.M. Lasry, J.Lebouchoux, and P.L. Lions. Applications of Malliavin Calculus to Monte Carlo Methods in Finance II. Finance Stoch., 2:73--88, 2001.
  9. E.~Fourni, J.M. Lasry, J.Lebouchoux, P.L. Lions, and N.Touzi. Applications of Malliavin calculus to Monte Carlo Methods in Finance. Finance Stoch., 5(2):201--236, 1999.
  10. El-Khatib, Youssef; Privault, Nicolas. Computations of Greeks in a market with jumps via the Malliavin calculus. Finance Stoch. 8 (2004), no. 2, 161--179. MR2048826 (2004k:91105)
  11. Nualart, David; Vives, Josep. Anticipative calculus for the Poisson process based on the Fock space. 154--165, Lecture Notes in Math., 1426, Springer, Berlin, 1990. MR1071538 (92i:60109)
  12. G. Di Nunno, B.Oksendal and F. Proske. Malliavin calculus for Lvy processes. To appear in Proc. Royal Soc. London., Manuscript, 2003.
  13. N.Privault and V.Debelley. Sensitivity analysis of European options in the Merton model via the Malliavin calculus on the Wiener space. Preprint., 2004.
  14. León, Jorge A.; Solé, Josep L.; Utzet, Frederic; Vives, Josep. On Lévy processes, Malliavin calculus and market models with jumps. Finance Stoch. 6 (2002), no. 2, 197--225. MR1897959 (2003b:60062)

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.