The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off

References

  • Aistleitner, Christoph; Dick, Josef. Low-discrepancy point sets for non-uniform measures. Acta Arith. 163 (2014), no. 4, 345--369. MR3217671
  • Aronszajn, N. Theory of reproducing kernels. Trans. Amer. Math. Soc. 68, (1950). 337--404. MR0051437
  • Beck, József. Some upper bounds in the theory of irregularities of distribution. Acta Arith. 43 (1984), no. 2, 115--130. MR0736726
  • Brauchart, Johann S.; Dick, Josef. A characterization of Sobolev spaces on the sphere and an extension of Stolarsky's invariance principle to arbitrary smoothness. Constr. Approx. 38 (2013), no. 3, 397--445. MR3122277
  • S. Chen, phConsistency and convergence rate of Markov chain quasi-Monte Carlo with examples, Ph.D. thesis, Stanford University, 2011.
  • Chen, S.; Dick, J.; Owen, A. B. Consistency of Markov chain quasi-Monte Carlo on continuous state spaces. Ann. Statist. 39 (2011), no. 2, 673--701. MR2816335
  • Chen, Su; Matsumoto, Makoto; Nishimura, Takuji; Owen, Art B. New inputs and methods for Markov chain quasi-Monte Carlo. Monte Carlo and quasi-Monte Carlo methods 2010, 313--327, Springer Proc. Math. Stat., 23, Springer, Heidelberg, 2012. MR3173841
  • J. Dick, D. Rudolf, and H. Zhu, phDiscrepancy bounds for uniformly ergodic Markov chain quasi-Monte Carlo, Preprint, Available at http://arxiv.org/abs/1303.2423 (2013).
  • Dudley, R. M. The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. J. Functional Analysis 1 1967 290--330. MR0220340
  • Fang, K.-T.; Wang, Y. Number-theoretic methods in statistics. Monographs on Statistics and Applied Probability, 51. Chapman & Hall, London, 1994. xii+340 pp. ISBN: 0-412-46520-5 MR1284470
  • Gnewuch, Michael. Bracketing numbers for axis-parallel boxes and applications to geometric discrepancy. J. Complexity 24 (2008), no. 2, 154--172. MR2400314
  • Haussler, David. Sphere packing numbers for subsets of the Boolean $n$-cube with bounded Vapnik-Chervonenkis dimension. J. Combin. Theory Ser. A 69 (1995), no. 2, 217--232. MR1313896
  • Heinrich, Stefan; Novak, Erich; Wasilkowski, Grzegorz W.; Woźniakowski, Henryk. The inverse of the star-discrepancy depends linearly on the dimension. Acta Arith. 96 (2001), no. 3, 279--302. MR1814282
  • Kallenberg, Olav. Foundations of modern probability. Second edition. Probability and its Applications (New York). Springer-Verlag, New York, 2002. xx+638 pp. ISBN: 0-387-95313-2 MR1876169
  • Kreyszig, Erwin. Introductory functional analysis with applications. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1989. xvi+688 pp. ISBN: 0-471-50459-9 MR0992618
  • L. Kuipers and H. Niederreiter, phUniform distribution of sequences, Dover Publications, New York, 2006.
  • Lemieux, Christiane; Sidorsky, Paul. Exact sampling with highly uniform point sets. Math. Comput. Modelling 43 (2006), no. 3-4, 339--349. MR2214643
  • León, Carlos A.; Perron, François. Optimal Hoeffding bounds for discrete reversible Markov chains. Ann. Appl. Probab. 14 (2004), no. 2, 958--970. MR2052909
  • L. Liao, phVariance reduction in gibbs sampler using quasi random numbers, J. Comput. Graph. Statist. 7 (1998), 253--266.
  • Liu, Jun S. Monte Carlo strategies in scientific computing. Springer Series in Statistics. Springer, New York, 2008. xvi+343 pp. ISBN: 978-0-387-76369-9; 0-387-95230-6 MR2401592
  • P. Mathé and E. Novak, phSimple Monte Carlo and the Metropolis algorithm, J. Complexity 23 (2007), no. 4-6, 673--696. MR2372022
  • Miasojedow, Błażej. Hoeffding's inequalities for geometrically ergodic Markov chains on general state space. Statist. Probab. Lett. 87 (2014), 115--120. MR3168944
  • Owen, Art B.; Tribble, Seth D. A quasi-Monte Carlo Metropolis algorithm. Proc. Natl. Acad. Sci. USA 102 (2005), no. 25, 8844--8849 (electronic). MR2168266
  • Roberts, Gareth O.; Rosenthal, Jeffrey S. Variance bounding Markov chains. Ann. Appl. Probab. 18 (2008), no. 3, 1201--1214. MR2418242
  • Rudin, Walter. Functional analysis. Second edition. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, 1991. xviii+424 pp. ISBN: 0-07-054236-8 MR1157815
  • Rudolf, Daniel. Explicit error bounds for Markov chain Monte Carlo. Dissertationes Math. (Rozprawy Mat.) 485 (2012), 1--93. MR2977521
  • I. Sobol, phPseudo-random numbers for constructing discrete Markov chains by the Monte Carlo method, USSR Compat. Math. Math. Phys. 14 (1974), 36--45. MR0339444
  • Steinwart, Ingo; Christmann, Andreas. Support vector machines. Information Science and Statistics. Springer, New York, 2008. xvi+601 pp. ISBN: 978-0-387-77241-7 MR2450103
  • Talagrand, M. Sharper bounds for Gaussian and empirical processes. Ann. Probab. 22 (1994), no. 1, 28--76. MR1258865
  • Tribble, Seth D. Markov chain Monte Carlo algorithms using completely uniformly distributed driving sequences. Thesis (Ph.D.)–Stanford University. ProQuest LLC, Ann Arbor, MI, 2007. 103 pp. ISBN: 978-0549-06379-7 MR2710331
  • Tribble, Seth D.; Owen, Art B. Construction of weakly CUD sequences for MCMC sampling. Electron. J. Stat. 2 (2008), 634--660. MR2426105


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.