Branching random walks and contact processes on Galton-Watson trees
Abstract
We consider branching random walks and contact processes on infinite, connected, locally finite graphs whose reproduction and infectivity rates across edges are inversely proportional to vertex degree. We show that when the ambient graph is a Galton-Watson tree then, in certain circumstances, the branching random walks and contact processes will have weak survival phases. We also provide bounds on critical values.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-12
Publication Date: April 17, 2014
DOI: 10.1214/EJP.v19-3118
References
- Benjamini, Itai; Müller, Sebastian. On the trace of branching random walks. Groups Geom. Dyn. 6 (2012), no. 2, 231--247. MR2914859
- Benjamini, Itai; Peres, Yuval. Markov chains indexed by trees. Ann. Probab. 22 (1994), no. 1, 219--243. MR1258875
- Daniela Bertacchi and Fabio Zucca. Recent results on branching random walks. In Statistical Mechanics and Random Walks: Principles, Processes and Applications, pages 289--340. Nova Science Publishers, 2012.
- Candellero, Elisabetta; Gilch, Lorenz A.; Müller, Sebastian. Branching random walks on free products of groups. Proc. Lond. Math. Soc. (3) 104 (2012), no. 6, 1085--1120. MR2946082
- Hueter, Irene; Lalley, Steven P. Anisotropic branching random walks on homogeneous trees. Probab. Theory Related Fields 116 (2000), no. 1, 57--88. MR1736590
- Lalley, Steven P. Growth profile and invariant measures for the weakly supercritical contact process on a homogeneous tree. Ann. Probab. 27 (1999), no. 1, 206--225. MR1681122
- Lalley, Steven P.; Sellke, Tom. Limit set of a weakly supercritical contact process on a homogeneous tree. Ann. Probab. 26 (1998), no. 2, 644--657. MR1626499
- Liggett, Thomas M. Branching random walks and contact processes on homogeneous trees. Probab. Theory Related Fields 106 (1996), no. 4, 495--519. MR1421990
- Liggett, Thomas M. Multiple transition points for the contact process on the binary tree. Ann. Probab. 24 (1996), no. 4, 1675--1710. MR1415225
- Lyons, Russell. Phase transitions on nonamenable graphs. Probabilistic techniques in equilibrium and nonequilibrium statistical physics. J. Math. Phys. 41 (2000), no. 3, 1099--1126. MR1757952
- Lyons, Russell; Pemantle, Robin; Peres, Yuval. Ergodic theory on Galton-Watson trees: speed of random walk and dimension of harmonic measure. Ergodic Theory Dynam. Systems 15 (1995), no. 3, 593--619. MR1336708
- Madras, Neal; Schinazi, Rinaldo. Branching random walks on trees. Stochastic Process. Appl. 42 (1992), no. 2, 255--267. MR1176500
- Müller, Sebastian. Recurrence for branching Markov chains. Electron. Commun. Probab. 13 (2008), 576--605. MR2461533
- Pemantle, Robin. The contact process on trees. Ann. Probab. 20 (1992), no. 4, 2089--2116. MR1188054
- Pemantle, Robin; Stacey, Alan M. The branching random walk and contact process on Galton-Watson and nonhomogeneous trees. Ann. Probab. 29 (2001), no. 4, 1563--1590. MR1880232
- Stacey, A. M. The existence of an intermediate phase for the contact process on trees. Ann. Probab. 24 (1996), no. 4, 1711--1726. MR1415226
- Woess, Wolfgang. Random walks on infinite graphs and groups. Cambridge Tracts in Mathematics, 138. Cambridge University Press, Cambridge, 2000. xii+334 pp. ISBN: 0-521-55292-3 MR1743100
This work is licensed under a Creative Commons Attribution 3.0 License.