The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off

References

  • Aldous, David. Stopping times and tightness. Ann. Probability 6 (1978), no. 2, 335--340. MR0474446
  • Bérard, Jean; Gouéré, Jean-Baptiste. Brunet-Derrida behavior of branching-selection particle systems on the line. Comm. Math. Phys. 298 (2010), no. 2, 323--342. MR2669438
  • Julien Berestycki, Nathanaël Berestycki, and Jason Schweinsberg. The genealogy of branching Brownian motion with absorption. arXiv:1001.2337.
  • Bingham, N. H.; Goldie, C. M.; Teugels, J. L. Regular variation. Encyclopedia of Mathematics and its Applications, 27. Cambridge University Press, Cambridge, 1987. xx+491 pp. ISBN: 0-521-30787-2 MR0898871
  • Brémaud, Pierre. Point processes and queues. Martingale dynamics. Springer Series in Statistics. Springer-Verlag, New York-Berlin, 1981. xviii+354 pp. ISBN: 0-387-90536-7 MR0636252
  • Brunet, Eric; Derrida, Bernard. Shift in the velocity of a front due to a cutoff. Phys. Rev. E (3) 56 (1997), no. 3, part A, 2597--2604. MR1473413
  • Éric Brunet and Bernard Derrida. Microscopic models of traveling wave equations. Computer Physics Communications, 121-122:376--381, September 1999.
  • Brunet, Éric; Derrida, Bernard. Effect of microscopic noise on front propagation. J. Statist. Phys. 103 (2001), no. 1-2, 269--282. MR1828730
  • Éric Brunet, Bernard Derrida, A. Mueller, and S. Munier. Phenomenological theory giving the full statistics of the position of fluctuating pulled fronts. Physical Review E, 73(5):056126, May 2006.
  • Brunet, E.; Derrida, B.; Mueller, A. H.; Munier, S. Noisy traveling waves: effect of selection on genealogies. Europhys. Lett. 76 (2006), no. 1, 1--7. MR2299937
  • Bunge, John; Goldie, Charles M. Record sequences and their applications. Stochastic processes: theory and methods, 277--308, Handbook of Statist., 19, North-Holland, Amsterdam, 2001. MR1861727
  • Cabré, Xavier; Roquejoffre, Jean-Michel. The influence of fractional diffusion in Fisher-KPP equations. Comm. Math. Phys. 320 (2013), no. 3, 679--722. MR3057187
  • Darren B. H. Cline and Tailen Hsing. Large deviation probabilities for sums of random variables with heavy or subexponential tails. Technical report, Statistics Department, Texas A&M University, available online at http://www.stat.tamu.edu/~dcline/Papers/large5.pdf, 1998.
  • Durrett, Richard. Maxima of branching random walks vs. independent random walks. Stochastic Process. Appl. 9 (1979), no. 2, 117--135. MR0548832
  • Durrett, Richard. Maxima of branching random walks. Z. Wahrsch. Verw. Gebiete 62 (1983), no. 2, 165--170. MR0688983
  • Durrett, Richard. Probability: theory and examples. Second edition. Duxbury Press, Belmont, CA, 1996. xiii+503 pp. ISBN: 0-534-24318-5 MR1609153
  • Durrett, Rick; Remenik, Daniel. Brunet-Derrida particle systems, free boundary problems and Wiener-Hopf equations. Ann. Probab. 39 (2011), no. 6, 2043--2078. MR2932664
  • Feller, William. An introduction to probability theory and its applications. Vol. II. Second edition John Wiley & Sons, Inc., New York-London-Sydney 1971 xxiv+669 pp. MR0270403
  • R. A. Fisher. The wave of advance of advantageous genes. Annals of Eugenics, 7(4):355--369, June 1937.
  • Gantert, Nina. The maximum of a branching random walk with semiexponential increments. Ann. Probab. 28 (2000), no. 3, 1219--1229. MR1797310
  • Andrei N. Kolmogorov, I.G. Petrovskii, and N.S. Piskunov. Étude de l'équation de la diffusion avec croissance de la quantite de matière et son application à un problème biologique. Bulletin de l'Université d'État à Moscou : Série internationale. Section A, Mathématiques et mécanique, 1(6):1--25, 1937.
  • Pascal Maillard. Speed and fluctuations of N-particle branching Brownian motion with spatial selection. arXiv:1304.0562, April 2013.
  • Pfeifer, D. Coupling methods in connection with Poisson process approximation. Z. Oper. Res. Ser. A-B 29 (1985), no. 5, A217--A223. MR0823979
  • Serfling, R. J. Some elementary results on Poisson approximation in a sequence of Bernoulli trials. SIAM Rev. 20 (1978), no. 3, 567--579. MR0482958
  • Skorohod, A. V. Limit theorems for stochastic processes. (Russian) Teor. Veroyatnost. i Primenen. 1 (1956), 289--319. MR0084897
  • Whitt, Ward. Stochastic-process limits. An introduction to stochastic-process limits and their application to queues. Springer Series in Operations Research. Springer-Verlag, New York, 2002. xxiv+602 pp. ISBN: 0-387-95358-2 MR1876437


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.