Central limit theorem for eigenvectors of heavy tailed matrices
Alice Guionnet (CNRS & MIT)
Abstract
We consider the eigenvectors of symmetric matrices with independent heavy tailed entries, such as matrices with entries in the domain of attraction of $\alpha$-stable laws, or adjacencymatrices of Erdos-Renyi graphs. We denote by $U=[u_{ij}]$ the eigenvectors matrix (corresponding to increasing eigenvalues) and prove that the bivariate process $$B^n_{s,t}:=n^{-1/2}\sum_{1\le i\le ns, 1\le j\le nt}(|u_{ij}|^2 -n^{-1}),$$ indexed by $s,t\in [0,1]$, converges in law to a non trivial Gaussian process. An interesting part of this result is the $n^{-1/2}$ rescaling, proving that from this point of view, the eigenvectors matrix $U$ behaves more like a permutation matrix (as it was proved by Chapuy that for $U$ a permutation matrix, $n^{-1/2}$ is the right scaling) than like a Haar-distributed orthogonal or unitary matrix (as it was proved by Rouault and Donati-Martin that for $U$ such a matrix, the right scaling is $1$).
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-27
Publication Date: June 23, 2014
DOI: 10.1214/EJP.v19-3093
References
- Anderson, Greg W.; Guionnet, Alice; Zeitouni, Ofer. An introduction to random matrices. Cambridge Studies in Advanced Mathematics, 118. Cambridge University Press, Cambridge, 2010. xiv+492 pp. ISBN: 978-0-521-19452-5 MR2760897
- Auffinger, Antonio; Ben Arous, Gerard; Peche, Sandrine. Poisson convergence for the largest eigenvalues of heavy tailed random matrices. Ann. Inst. Henri Poincare Probab. Stat. 45 (2009), no. 3, 589--610. MR2548495
- Bai, Zhidong; Silverstein, Jack W. Spectral analysis of large dimensional random matrices. Second edition. Springer Series in Statistics. Springer, New York, 2010. xvi+551 pp. ISBN: 978-1-4419-0660-1 MR2567175
- Z. Bao, G. Pan, W. Zhou Universality for a Global Property of the Eigenvectors of Wigner Matrices, arXiv:1211.2507
- V. Beffara, C. Donati-Martin, A. Rouault Bridges and random truncations of random matrices Random Matrices: Theory and Appl. Vol. 03, No. 02. arXiv:1312.2382
- Belinschi, Serban; Dembo, Amir; Guionnet, Alice. Spectral measure of heavy tailed band and covariance random matrices. Comm. Math. Phys. 289 (2009), no. 3, 1023--1055. MR2511659
- Ben Arous, Gerard; Guionnet, Alice. The spectrum of heavy tailed random matrices. Comm. Math. Phys. 278 (2008), no. 3, 715--751. MR2373441
- Benaych-Georges, Florent. A universality result for the global fluctuations of the eigenvectors of Wigner matrices. Random Matrices Theory Appl. 1 (2012), no. 4, 1250011, 23 pp. MR3039372
- Benaych-Georges, Florent; Cabanal-Duvillard, Thierry. Marčenko-Pastur theorem and Bercovici-Pata bijections for heavy-tailed or localized vectors. ALEA Lat. Am. J. Probab. Math. Stat. 9 (2012), no. 2, 685--715. MR3069381
- Benaych-Georges, Florent; Guionnet, Alice; Male, Camille. Central Limit Theorems for Linear Statistics of Heavy Tailed Random Matrices. Comm. Math. Phys. 329 (2014), no. 2, 641--686. MR3210147
- Bickel, P. J.; Wichura, M. J. Convergence criteria for multiparameter stochastic processes and some applications. Ann. Math. Statist. 42 (1971), 1656--1670. MR0383482
- Billingsley, Patrick. Probability and measure. Third edition. Wiley Series in Probability and Mathematical Statistics. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1995. xiv+593 pp. ISBN: 0-471-00710-2 MR1324786
- Bordenave, Charles; Caputo, Pietro; Chafai, Djalil. Spectrum of non-Hermitian heavy tailed random matrices. Comm. Math. Phys. 307 (2011), no. 2, 513--560. MR2837123
- Bordenave, Charles; Caputo, Pietro; Chafai, Djalil. Spectrum of large random reversible Markov chains: heavy-tailed weights on the complete graph. Ann. Probab. 39 (2011), no. 4, 1544--1590. MR2857250
- Bordenave, Charles; Guionnet, Alice. Localization and delocalization of eigenvectors for heavy-tailed random matrices. Probab. Theory Related Fields 157 (2013), no. 3-4, 885--953. MR3129806
- J.-P. Bouchaud, P. Cizeau, Theory of Lévy matrices Phys. Rev. E 50 (1994).
- Chapuy, Guillaume. Random permutations and their discrepancy process. 2007 Conference on Analysis of Algorithms, AofA 07, 415--426, Discrete Math. Theor. Comput. Sci. Proc., AH, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2007. MR2509538
- C. Donati-Martin, A. Rouault Truncations of Haar unitary matrices, traces and bivariate Brownian bridge, Random Matrices: Theory and Application (RMTA) Vol. 01, No. 01. MR2930384
- Erdős, László; Knowles, Antti; Yau, Horng-Tzer; Yin, Jun. Spectral statistics of Erdős-Rényi Graphs II: Eigenvalue spacing and the extreme eigenvalues. Comm. Math. Phys. 314 (2012), no. 3, 587--640. MR2964770
- Erdős, László; Ramírez, José A.; Schlein, Benjamin; Yau, Horng-Tzer. Universality of sine-kernel for Wigner matrices with a small Gaussian perturbation. Electron. J. Probab. 15 (2010), no. 18, 526--603. MR2639734
- Erdős, László; Schlein, Benjamin; Yau, Horng-Tzer. Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices. Ann. Probab. 37 (2009), no. 3, 815--852. MR2537522
- Erdős, László; Yau, Horng-Tzer; Yin, Jun. Rigidity of eigenvalues of generalized Wigner matrices. Adv. Math. 229 (2012), no. 3, 1435--1515. MR2871147
- Erdős, László; Yau, Horng-Tzer; Yin, Jun. Universality for generalized Wigner matrices with Bernoulli distribution. J. Comb. 2 (2011), no. 1, 15--81. MR2847916
- Erdős, László; Schlein, Benjamin; Yau, Horng-Tzer. Universality of random matrices and local relaxation flow. Invent. Math. 185 (2011), no. 1, 75--119. MR2810797
- Erdős, László; Ramírez, José; Schlein, Benjamin; Tao, Terence; Vu, Van; Yau, Horng-Tzer. Bulk universality for Wigner Hermitian matrices with subexponential decay. Math. Res. Lett. 17 (2010), no. 4, 667--674. MR2661171
- Erdős, László; Péché, Sandrine; Ramírez, José A.; Schlein, Benjamin; Yau, Horng-Tzer. Bulk universality for Wigner matrices. Comm. Pure Appl. Math. 63 (2010), no. 7, 895--925. MR2662426
- Khorunzhy, Alexei M.; Khoruzhenko, Boris A.; Pastur, Leonid A. Asymptotic properties of large random matrices with independent entries. J. Math. Phys. 37 (1996), no. 10, 5033--5060. MR1411619
- Khorunzhy, O.; Shcherbina, M.; Vengerovsky, V. Eigenvalue distribution of large weighted random graphs. J. Math. Phys. 45 (2004), no. 4, 1648--1672. MR2043849
- C. Male The limiting distributions of large heavy Wigner and arbitrary random matrices, arXiv:1111.4662.
- Mehta, Madan Lal. Random matrices. Third edition. Pure and Applied Mathematics (Amsterdam), 142. Elsevier/Academic Press, Amsterdam, 2004. xviii+688 pp. ISBN: 0-12-088409-7 MR2129906
- Shcherbina, Mariya; Tirozzi, Brunello. Central limit theorem for fluctuations of linear eigenvalue statistics of large random graphs. J. Math. Phys. 51 (2010), no. 2, 023523, 20 pp. MR2605074
- Silverstein, Jack W. Weak convergence of random functions defined by the eigenvectors of sample covariance matrices. Ann. Probab. 18 (1990), no. 3, 1174--1194. MR1062064
- Slanina, F. Localization of eigenvectors in random graphs. Eur. Phys. J. B 85 (2012), no. 11, Art. 361, 12 pp. MR3039394
- Soshnikov, Alexander. Poisson statistics for the largest eigenvalues of Wigner random matrices with heavy tails. Electron. Comm. Probab. 9 (2004), 82--91 (electronic). MR2081462
- Tao, Terence; Vu, Van. Random matrices: universality of local eigenvalue statistics. Acta Math. 206 (2011), no. 1, 127--204. MR2784665
- Tao, Terence. The asymptotic distribution of a single eigenvalue gap of a Wigner matrix. Probab. Theory Related Fields 157 (2013), no. 1-2, 81--106. MR3101841
- Tracy, Craig A.; Widom, Harold. Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159 (1994), no. 1, 151--174. MR1257246
- Zakharevich, Inna. A generalization of Wigner's law. Comm. Math. Phys. 268 (2006), no. 2, 403--414. MR2259200
- Wigner, Eugene P. On the distribution of the roots of certain symmetric matrices. Ann. of Math. (2) 67 1958 325--327. MR0095527
This work is licensed under a Creative Commons Attribution 3.0 License.