Download this PDF file Fullscreen Fullscreen Off
References
- M. Aizenman, and D.J. Barsky. Sharpness of the phase transition in percolation models. Comm. Math. Phys. 108 (1987), no. 3, 489-526. MR0874906
- R.M. Bradley, P. N. Strenski, and J.-M. Debierre. Surfaces of percolation clusters in three dimensions. Physical Review B, 44 (1991), 76-84.
- R.M. Bradley, J.-M. Debierre, and P.N. Strenski. Anomalous scaling behavior in percolation with three colors. Physical review letters, 68(15) (1992), 2332-2335.
- R. M. Bradley, P.N. Strenski, and J.-M. Debierre. A growing self-avoiding walk in three dimensions and its relation to percolation. Physical Review A, 45(12) (1992), p.8513.
- R.M. Bradley, J.-M. Debierre, and P.N. Stenski. A novel growing self-avoiding walk in three dimensions. Journal of Physics A, 25(9) (1992) p.L541.
- R.M. Burton, and M. Keane. Density and uniqueness in percolation. Comm. Math. Phys. 121 (1989), no. 3, 501-505. MR0990777
- F. Camia, and C. Newman. Two-dimensional critical percolation: the full scaling limit. Comm. Math. Phys. 268 (2006), no. 1, 1-38. MR2249794
- D. S. Gaunt, and M. F. Sykes. Series study of random percolation in three dimensions. Journal of Physics A, 16 (1983), 783-799.
- Grimmett, Geoffrey. Percolation. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 321. Springer-Verlag, Berlin, 1999. xiv+444 pp. ISBN: 3-540-64902-6 MR1707339
- M. Hindmarsh, and K. Strobl. Statistical properties of strings. Nuclear Physics B, 437(2) (1995), 471-488.
- W.Z. Kitto, A. Vince, and D.C. Wilson. An isomorphism between the $p$-adic integers and a ring associated with a tiling of $N$-space by permutohedra. Discrete Appl. Math. 52 (1994), no. 1, 39-51. MR1283243
- C.D. Lorenz, and R.M. Ziff. Universality of the excess number of clusters and the crossing probability function in three-dimensional percolation. Journal of Physics A, 31 (1998) 8147-8157.
- A. Nahum, and J.T. Chalker. Universal statistics of vortex lines. Physical Review E, 85(3) (2012).
- A. Nahum, J.T. Chalker, P. Serna, M. Ortuno, and A.M. Somoza. 3d loop models and the cp^n-1 sigma model. Physical Review Letters, 107(11) (2011).
- R.J. Scherrer, and J.A. Frieman. Cosmic strings as random walks. Physical Review D, 33(12) (1986).
- O. Schramm. Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118 (2000), 221-288. MR1776084
- S. Sheffield. Exploration trees and conformal loop ensembles. Duke Math. J. 147 (2009), no. 1, 79-129. MR2494457
- J.H. Conway, and N.J.A. Sloane. Sphere packings, lattices and groups. Third edition. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 290. Springer-Verlag, New York, 1999. lxxiv+703 pp. ISBN: 0-387-98585-9 MR1662447
- S. Smirnov. Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 3, 239-244. MR1851632
- S. Smirnov, W. Werner. Critical exponents for two-dimensional percolation. Math. Res. Lett. 8 (2001), no. 5-6, 729-744. MR1879816
- N. Sun. Conformally invariant scaling limits in planar critical percolation. Probab. Surv. 8 (2011), 155-209. MR2846901
- S. Tsarev. The geometry of a deformation of the standard addition on the integral lattice. ArXiv e-prints, January 2013.
- A. Vilenkin. Cosmic strings. The very early universe (Cambridge, 1982), 163--169, Cambridge Univ. Press, Cambridge, 1983. MR0746316
- G.M. Ziegler. Lecture on polytopes, volume 152. Springer Verlag, 1995.
This work is licensed under a Creative Commons Attribution 3.0 License.