The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off

References

  • Anderson, Greg W. Convergence of the largest singular value of a polynomial in independent Wigner matrices. Ann. Probab. 41 (2013), no. 3B, 2103--2181. MR3098069
  • Arbenz, Peter; Gander, Walter; Golub, Gene H. Restricted rank modification of the symmetric eigenvalue problem: theoretical considerations. Linear Algebra Appl. 104 (1988), 75--95. MR0944010
  • Bai, Z. D. Circular law. Ann. Probab. 25 (1997), no. 1, 494--529. MR1428519
  • Bai, Z. D.; Silverstein, Jack W. No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices. Ann. Probab. 26 (1998), no. 1, 316--345. MR1617051
  • Bai, Zhidong; Silverstein, Jack W. Spectral analysis of large dimensional random matrices. Second edition. Springer Series in Statistics. Springer, New York, 2010. xvi+551 pp. ISBN: 978-1-4419-0660-1 MR2567175
  • Bai, Z. D.; Pan, G. M. Limiting behavior of eigenvectors of large Wigner matrices. J. Stat. Phys. 146 (2012), no. 3, 519--549. MR2880031
  • Trefethen, Lloyd N.; Bau, David, III. Numerical linear algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997. xii+361 pp. ISBN: 0-89871-361-7 MR1444820
  • Benaych-Georges, Florent; Nadakuditi, Raj Rao. The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices. Adv. Math. 227 (2011), no. 1, 494--521. MR2782201
  • Benaych-Georges, F.; Guionnet, A.; Maida, M. Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices. Electron. J. Probab. 16 (2011), no. 60, 1621--1662. MR2835249
  • Benaych-Georges, F.; Guionnet, A.; Maida, M. Large deviations of the extreme eigenvalues of random deformations of matrices. Probab. Theory Related Fields 154 (2012), no. 3-4, 703--751. MR3000560
  • F. Benaych-Georges, J. Rochet, Outliers in the Single Ring Theorem, available at arXiv:1308.3064.
  • Bhatia, Rajendra. Matrix analysis. Graduate Texts in Mathematics, 169. Springer-Verlag, New York, 1997. xii+347 pp. ISBN: 0-387-94846-5 MR1477662
  • Biane, Philippe; Lehner, Franz. Computation of some examples of Brown's spectral measure in free probability. Colloq. Math. 90 (2001), no. 2, 181--211. MR1876844
  • Bordenave, Charles; Chafaï, Djalil. Around the circular law. Probab. Surv. 9 (2012), 1--89. MR2908617
  • Bordenave, Charles; Caputo, Pietro; Chafaï, Djalil. Spectrum of Markov generators on sparse random graphs. Comm. Pure Appl. Math. 67 (2014), no. 4, 621--669. MR3168123
  • Burkholder, D. L. Distribution function inequalities for martingales. Ann. Probability 1 (1973), 19--42. MR0365692
  • Capitaine, Mireille; Donati-Martin, Catherine; Féral, Delphine. The largest eigenvalues of finite rank deformation of large Wigner matrices: convergence and nonuniversality of the fluctuations. Ann. Probab. 37 (2009), no. 1, 1--47. MR2489158
  • Capitaine, M.; Donati-Martin, C.; Féral, D. Central limit theorems for eigenvalues of deformations of Wigner matrices. Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012), no. 1, 107--133. MR2919200
  • Capitaine, M.; Donati-Martin, C.; Féral, D.; Février, M. Free convolution with a semicircular distribution and eigenvalues of spiked deformations of Wigner matrices. Electron. J. Probab. 16 (2011), no. 64, 1750--1792. MR2835253
  • Cucker, Felipe; Gonzalez Corbalan, Antonio. An alternate proof of the continuity of the roots of a polynomial. Amer. Math. Monthly 96 (1989), no. 4, 342--345. MR0992082
  • Dilworth, S. J. Some probabilistic inequalities with applications to functional analysis. Banach spaces (Mérida, 1992), 53--67, Contemp. Math., 144, Amer. Math. Soc., Providence, RI, 1993. MR1209446
  • Edelman, Alan. The probability that a random real Gaussian matrix has $k$ real eigenvalues, related distributions, and the circular law. J. Multivariate Anal. 60 (1997), no. 2, 203--232. MR1437734
  • Féral, Delphine; Péché, Sandrine. The largest eigenvalue of rank one deformation of large Wigner matrices. Comm. Math. Phys. 272 (2007), no. 1, 185--228. MR2291807
  • Füredi, Z.; Komlos, J. The eigenvalues of random symmetric matrices. Combinatorica 1 (1981), no. 3, 233--241. MR0637828
  • Y. V. Fyodorov, H-J. Sommers, phStatistics of S-matrix poles in few-channel chaotic scattering: crossover from isolated to overlapping resonances, JETP Lett., Volume 63 (1996) Issue 12, 1026--1030.
  • Fyodorov, Yan V.; Sommers, Hans-Jorgen. Statistics of resonance poles, phase shifts and time delays in quantum chaotic scattering: random matrix approach for systems with broken time-reversal invariance. Quantum problems in condensed matter physics. J. Math. Phys. 38 (1997), no. 4, 1918--1981. MR1450906
  • Y. V. Fyodorov, B.A. Khoruzhenko, phSystematic analytical approach to correlation functions of resonances in quantum chaotic scattering, Phys. Rev. Lett., Volume 83 (1999), Issue 1, 65--68.
  • Ginibre, Jean. Statistical ensembles of complex, quaternion, and real matrices. J. Mathematical Phys. 6 1965 440--449. MR0173726
  • Girko, V. L. The elliptic law. (Russian) Teor. Veroyatnost. i Primenen. 30 (1985), no. 4, 640--651. MR0816278
  • Girko, V. L. The elliptic law: ten years later. I. Random Oper. Stochastic Equations 3 (1995), no. 3, 257--302. MR1354817
  • Götze, Friedrich; Tikhomirov, Alexander. The circular law for random matrices. Ann. Probab. 38 (2010), no. 4, 1444--1491. MR2663633
  • Horn, Roger A.; Johnson, Charles R. Topics in matrix analysis. Cambridge University Press, Cambridge, 1991. viii+607 pp. ISBN: 0-521-30587-X MR1091716
  • R. A. Horn, C. R. Johnson, textitMatrix Analysis, Cambridge Univ. Press (1991).
  • Haagerup, Uffe; Thorbjornsen, Steen. A new application of random matrices: ${\rm Ext}(C^ *_ {\rm red}(F_ 2))$ is not a group. Ann. of Math. (2) 162 (2005), no. 2, 711--775. MR2183281
  • Knowles, Antti; Yin, Jun. The isotropic semicircle law and deformation of Wigner matrices. Comm. Pure Appl. Math. 66 (2013), no. 11, 1663--1750. MR3103909
  • A. Knowles, J. Yin, The outliers of a deformed Wigner matrix, available at arXiv:1207.5619.
  • Mehta, M. L. Random matrices and the statistical theory of energy levels. Academic Press, New York-London 1967 x+259 pp. MR0220494
  • Mehta, Madan Lal. Random matrices. Third edition. Pure and Applied Mathematics (Amsterdam), 142. Elsevier/Academic Press, Amsterdam, 2004. xviii+688 pp. ISBN: 0-12-088409-7 MR2129906
  • A. Naumov, Elliptic law for real random matrices, available at arXiv:1201.1639.
  • H. Nguyen, S. O'Rourke. The elliptic law, available at arXiv:1208.5883.
  • Pan, Guangming; Zhou, Wang. Circular law, extreme singular values and potential theory. J. Multivariate Anal. 101 (2010), no. 3, 645--656. MR2575411
  • Péché, S. The largest eigenvalue of small rank perturbations of Hermitian random matrices. Probab. Theory Related Fields 134 (2006), no. 1, 127--173. MR2221787
  • Pizzo, Alessandro; Renfrew, David; Soshnikov, Alexander. On finite rank deformations of Wigner matrices. Ann. Inst. Henri Poincaré Probab. Stat. 49 (2013), no. 1, 64--94. MR3060148
  • Renfrew, David; Soshnikov, Alexander. On finite rank deformations of Wigner matrices II: Delocalized perturbations. Random Matrices Theory Appl. 2 (2013), no. 1, 1250015, 36 pp. MR3039820
  • Rudin, Walter. Principles of mathematical analysis. Third edition. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York-Auckland-Düsseldorf, 1976. x+342 pp. MR0385023
  • Tao, Terence; Vu, Van. Random matrices: the circular law. Commun. Contemp. Math. 10 (2008), no. 2, 261--307. MR2409368
  • Tao, Terence; Vu, Van. From the Littlewood-Offord problem to the circular law: universality of the spectral distribution of random matrices. Bull. Amer. Math. Soc. (N.S.) 46 (2009), no. 3, 377--396. MR2507275
  • Tao, Terence; Vu, Van. Random matrices: universality of ESDs and the circular law. With an appendix by Manjunath Krishnapur. Ann. Probab. 38 (2010), no. 5, 2023--2065. MR2722794
  • Tao, Terence. Outliers in the spectrum of iid matrices with bounded rank perturbations. Probab. Theory Related Fields 155 (2013), no. 1-2, 231--263. MR3010398
  • Tyrtyshnikov, Eugene E. A brief introduction to numerical analysis. Birkhäuser Boston, Inc., Boston, MA, 1997. xii+202 pp. ISBN: 0-8176-3916-0 MR1442956
  • Voiculescu, Dan. Limit laws for random matrices and free products. Invent. Math. 104 (1991), no. 1, 201--220. MR1094052
  • Wigner, Eugene P. On the distribution of the roots of certain symmetric matrices. Ann. of Math. (2) 67 1958 325--327. MR0095527


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.