The contact process with fast voting
Thomas Liggett (UCLA)
Yuan Zhang (Duke)
Abstract
Consider a combination of the contact process and the voter model in which deaths occur at rate 1 per site, and across each edge between nearest neighbors births occur at rate $\lambda$ and voting events occur at rate $\theta$. We are interested in the asymptotics as $\theta \to\infty$ of the critical value $\lambda_c(\theta)$ for the existence of a nontrivial stationary distribution. In $d \ge 3$, $\lambda_c(\theta) \to 1/(2d\rho_d)$ where $\rho_d$ is the probability a $d$ dimensional simple random walk does not return to its starting point.In $d=2$, $\lambda_c(\theta)/\log(\theta) \to 1/4\pi$, while in $d=1$, $\lambda_c(\theta)/\theta^{1/2}$ has $\liminf \ge 1/\sqrt{2}$ and $\limsup < \infty$.The lower bound might be the right answer, but proving this, or even getting a reasonable upper bound, seems to be a difficult problem.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-19
Publication Date: March 3, 2014
DOI: 10.1214/EJP.v19-3021
References
- Bramson, Maury; Griffeath, David. On the Williams-Bjerknes tumour growth model. I. Ann. Probab. 9 (1981), no. 2, 173--185. MR0606980
- Cox, J. Theodore; Durrett, Richard; Perkins, Edwin A. Voter model perturbations and reaction diffusion equations. Astérisque No. 349 (2013), vi+113 pp. ISBN: 978-2-85629-355-3 MR3075759
- Zähle, Iljana; Cox, J. Theodore; Durrett, Richard. The stepping stone model. II. Genealogies and the infinite sites model. Ann. Appl. Probab. 15 (2005), no. 1B, 671--699. MR2114986
- Durrett, Rick. Ten lectures on particle systems. Lectures on probability theory (Saint-Flour, 1993), 97--201, Lecture Notes in Math., 1608, Springer, Berlin, 1995. MR1383122
- Durrett, Rick; Zähle, Iljana. On the width of hybrid zones. Stochastic Process. Appl. 117 (2007), no. 12, 1751--1763. MR2437727
- Feller, William. An introduction to probability theory and its applications. Vol. II. John Wiley & Sons, Inc., New York-London-Sydney 1966 xviii+636 pp. MR0210154
- Fukai, Yasunari; Uchiyama, Kôhei. Potential kernel for two-dimensional random walk. Ann. Probab. 24 (1996), no. 4, 1979--1992. MR1415236
- Griffeath, David. Additive and cancellative interacting particle systems. Lecture Notes in Mathematics, 724. Springer, Berlin, 1979. iv+108 pp. ISBN: 3-540-09508-X MR0538077
- Harris, T. E. Additive set-valued Markov processes and graphical methods. Ann. Probability 6 (1978), no. 3, 355--378. MR0488377
- Holley, R.; Liggett, T. M. The survival of contact processes. Ann. Probability 6 (1978), no. 2, 198--206. MR0488379
- Liggett, Thomas M. Interacting particle systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 276. Springer-Verlag, New York, 1985. xv+488 pp. ISBN: 0-387-96069-4 MR0776231
- Liggett, Thomas M. Improved upper bounds for the contact process critical value. Ann. Probab. 23 (1995), no. 2, 697--723. MR1334167
- Liggett, Thomas M. Stochastic interacting systems: contact, voter and exclusion processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 324. Springer-Verlag, Berlin, 1999. xii+332 pp. ISBN: 3-540-65995-1 MR1717346
- Liggett, T.M. (2013) Survival of the contact+voter process on the integers. http://www.math.ucla.edu/~tml/contact+voter.pdf
- Spitzer, Frank. Principles of random walk. Second edition. Graduate Texts in Mathematics, Vol. 34. Springer-Verlag, New York-Heidelberg, 1976. xiii+408 pp. MR0388547
This work is licensed under a Creative Commons Attribution 3.0 License.