The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off

References

  • Berger, Toby. Rate distortion theory. A mathematical basis for data compression. Prentice-Hall Series in Information and System Sciences. Prentice-Hall, Inc., Englewood Cliffs, N. J., 1971. xiii+311 pp. MR0408988
  • Bingham, N. H.; Goldie, C. M.; Teugels, J. L. Regular variation. Encyclopedia of Mathematics and its Applications, 27. Cambridge University Press, Cambridge, 1987. xx+491 pp. ISBN: 0-521-30787-2 MR0898871
  • Corlay Sylvain. Some aspects of optimal quantization and applications to finance. Thèse de l'Université Pierre et Marie Curie. 2011 http://tel.archives-ouvertes.fr/tel-00626445/.
  • Corlay S., Lebowitz J. and Lévy-Véhel J. Multifractional Stochastic volatility models. Mathematical Finance, 20(2), (2014),364-402.
  • Dembo, Amir; Zeitouni, Ofer. Large deviations techniques and applications. Corrected reprint of the second (1998) edition. Stochastic Modelling and Applied Probability, 38. Springer-Verlag, Berlin, 2010. xvi+396 pp. ISBN: 978-3-642-03310-0 MR2571413
  • Dereich, Steffen. Asymptotic behavior of the distortion-rate function for Gaussian processes in Banach spaces. Bull. Sci. Math. 129 (2005), no. 10, 791-803. MR2178943
  • Graf, Siegfried; Luschgy, Harald. Foundations of quantization for probability distributions. Lecture Notes in Mathematics, 1730. Springer-Verlag, Berlin, 2000. x+230 pp. ISBN: 3-540-67394-6 MR1764176
  • Ihara, Shunsuke. On $\varepsilon $-entropy of equivalent Gaussian processes. Nagoya Math. J., 37, (1970), 121-130. MR0258107
  • Janson, Svante. Gaussian Hilbert spaces. Cambridge Tracts in Mathematics, 129. Cambridge University Press, Cambridge, 1997. x+340 pp. ISBN: 0-521-56128-0 MR1474726
  • Kolmogorov, A. N. On the Shannon entropy of information transmission in the case of continuous signals. IRE Trans. Inform. Theory, 2, (1956), 102-108.
  • Lejay, Antoine; Reutenauer, Victor. A variance reduction technique using a quantized Brownian motion as a control variate. J. Comput. Finance, 16(2), (2012), 61-84.
  • Luschgy, Harald; Pagès, Gilles. Functional quantization of Gaussian processes. J. Funct. Anal. 196(2), (2002), 486-531. MR1943099
  • Luschgy, Harald; Pagès, Gilles. Sharp asymptotics of the functional quantization problem for Gaussian processes. Ann. Probab. 32(2), (2004), 574-1599. MR2060310
  • Luschgy, Harald; Pagès, Gilles; Wilbertz, Benedikt. Asymptotically optimal quantization schemes for Gaussian processes on Hilbert spaces. ESAIM Probab. Stat., 14, (2010), 93-116. MR2654549
  • Pagès, Gilles; Printems, Jacques. Functional quantization for numerics with an application to option pricing. Monte Carlo Methods Appl. 11(4), (2005), 407-446. MR2186817
  • Pagès, Gilles; Sellami, Afef. Convergence of multi-dimensional quantized SDE's. Séminaire de Probabilités XLIII, 269-307, Lecture Notes in Math. 2006, Springer, Berlin, 2011. MR2790377
  • Shannon, Claude E.; Weaver, Warren. The Mathematical Theory of Communication. The University of Illinois Press, Urbana, Ill., 1949. vi+117 pp. MR0032134


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.