The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off

References

  • Bakry, Dominique; Émery, Michel. Diffusions hypercontractives. (French) [Hypercontractive diffusions] Séminaire de probabilités, XIX, 1983/84, 177--206, Lecture Notes in Math., 1123, Springer, Berlin, 1985. MR0889476
  • Bobkov, S. G. Isoperimetric and analytic inequalities for log-concave probability measures. Ann. Probab. 27 (1999), no. 4, 1903--1921. MR1742893
  • Bodineau, T.; Helffer, B. The log-Sobolev inequality for unbounded spin systems. J. Funct. Anal. 166 (1999), no. 1, 168--178. MR1704666
  • Bodineau, T.; Helffer, B. Correlations, spectral gap and log-Sobolev inequalities for unbounded spins systems. Differential equations and mathematical physics (Birmingham, AL, 1999), 51--66, AMS/IP Stud. Adv. Math., 16, Amer. Math. Soc., Providence, RI, 2000. MR1764741
  • Brascamp, Herm Jan; Lieb, Elliott H. On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Functional Analysis 22 (1976), no. 4, 366--389. MR0450480
  • Brydges, David; Fröhlich, Jürg; Spencer, Thomas. The random walk representation of classical spin systems and correlation inequalities. Comm. Math. Phys. 83 (1982), no. 1, 123--150. MR0648362
  • Chen, Mu Fa. Spectral gap and logarithmic Sobolev constant for continuous spin systems. Acta Math. Sin. (Engl. Ser.) 24 (2008), no. 5, 705--736. MR2403108
  • Helffer, Bernard. Spectral properties of the Kac operator in large dimension. Mathematical quantum theory. II. Schrödinger operators (Vancouver, BC, 1993), 179--211, CRM Proc. Lecture Notes, 8, Amer. Math. Soc., Providence, RI, 1995. MR1332041
  • Helffer, Bernard. Remarks on decay of correlations and Witten Laplacians, Brascamp-Lieb inequalities and semiclassical limit. J. Funct. Anal. 155 (1998), no. 2, 571--586. MR1624506
  • Helffer, Bernard. Remarks on decay of correlations and Witten Laplacians. III. Application to logarithmic Sobolev inequalities. Ann. Inst. H. Poincaré Probab. Statist. 35 (1999), no. 4, 483--508. MR1702239
  • Helffer, Bernard. Semiclassical analysis, Witten Laplacians, and statistical mechanics, Series in Partial Differential Equations and Applications, vol. 1, World Scientific Publishing Co. Inc., River Edge, NJ, 2002. MRMR1936110
  • Helffer, Bernard; Sjöstrand, Johannes. On the correlation for Kac-like models in the convex case. J. Statist. Phys. 74 (1994), no. 1-2, 349--409. MR1257821
  • Holley, Richard; Stroock, Daniel. Logarithmic Sobolev inequalities and stochastic Ising models. J. Statist. Phys. 46 (1987), no. 5-6, 1159--1194. MR0893137
  • Ledoux, Michel. Logarithmic Sobolev inequalities for unbounded spin systems revisited. Séminaire de Probabilités, XXXV, 167--194, Lecture Notes in Math., 1755, Springer, Berlin, 2001. MR1837286
  • Menz, Georg. Equilibrium dynamics of continuous unbounded spin systems, Ph.D. thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, 2011.
  • Menz, Georg. LSI for Kawasaki dynamics with weak interaction. Comm. Math. Phys. 307 (2011), no. 3, 817--860. MR2842967
  • Menz, Georg. The approach of Otto-Reznikoff revisited, ArXive (2013), http://arxiv.org/abs/1309.0862.
  • Otto, Felix; Reznikoff, Maria G. A new criterion for the logarithmic Sobolev inequality and two applications. J. Funct. Anal. 243 (2007), no. 1, 121--157. MR2291434
  • Otto, Felix.; Villani, Cedric. Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173 (2000), no. 2, 361--400. MR1760620
  • Yoshida, Nobuo. The log-Sobolev inequality for weakly coupled lattice fields. Probab. Theory Related Fields 115 (1999), no. 1, 1--40. MR1715549
  • Yoshida, Nobuo. The equivalence of the log-Sobolev inequality and a mixing condition for unbounded spin systems on the lattice. Ann. Inst. H. Poincaré Probab. Statist. 37 (2001), no. 2, 223--243. MR1819124
  • Zegarlinski, Bogusław. Log-Sobolev inequalities for infinite one-dimensional lattice systems. Comm. Math. Phys. 133 (1990), no. 1, 147--162. MR1071239
  • Zegarlinski, Boguslaw. The strong decay to equilibrium for the stochastic dynamics of unbounded spin systems on a lattice. Comm. Math. Phys. 175 (1996), no. 2, 401--432. MR1370101


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.