The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off

References

  • Aïdékon, E.; Berestycki, J.; Brunet, É.; Shi, Z. Branching Brownian motion seen from its tip. Probab. Theory Related Fields 157 (2013), no. 1-2, 405--451. MR3101852
  • Arguin, Louis-Pierre; Bovier, Anton; Kistler, Nicola. Poissonian statistics in the extremal process of branching Brownian motion. Ann. Appl. Probab. 22 (2012), no. 4, 1693--1711. MR2985174
  • Arguin, Louis-Pierre; Bovier, Anton; Kistler, Nicola. The extremal process of branching Brownian motion. Probab. Theory Related Fields 157 (2013), no. 3-4, 535--574. MR3129797
  • Bovier, Anton; Kurkova, Irina. Derrida's generalised random energy models. I. Models with finitely many hierarchies. Ann. Inst. H. Poincaré Probab. Statist. 40 (2004), no. 4, 439--480. MR2070334
  • Bovier, Anton; Kurkova, Irina. Derrida's generalized random energy models. II. Models with continuous hierarchies. Ann. Inst. H. Poincaré Probab. Statist. 40 (2004), no. 4, 481--495. MR2070335
  • Bramson, Maury. Convergence of solutions of the Kolmogorov equation to travelling waves. Mem. Amer. Math. Soc. 44 (1983), no. 285, iv+190 pp. MR0705746
  • Bramson, Maury D. Maximal displacement of branching Brownian motion. Comm. Pure Appl. Math. 31 (1978), no. 5, 531--581. MR0494541
  • Chauvin, B.; Rouault, A. Supercritical branching Brownian motion and K-P-P equation in the critical speed-area. Math. Nachr. 149 (1990), 41--59. MR1124793
  • Derrida, B.; Spohn, H. Polymers on disordered trees, spin glasses, and traveling waves. New directions in statistical mechanics (Santa Barbara, CA, 1987). J. Statist. Phys. 51 (1988), no. 5-6, 817--840. MR0971033
  • Fang, Ming; Zeitouni, Ofer. Branching random walks in time inhomogeneous environments. Electron. J. Probab. 17 (2012), no. 67, 18 pp. MR2968674
  • Fang, Ming; Zeitouni, Ofer. Slowdown for time inhomogeneous branching Brownian motion. J. Stat. Phys. 149 (2012), no. 1, 1--9. MR2981635
  • E. Gardner and B. Derrida, phSolution of the generalised random energy model, J. Phys. C 19 (1986), 2253--2274.
  • J.-B. Gouéré, Branching Brownian motion seen from its left-most particule, ArXiv e-prints (2013).
  • Lisa Hartung, in preparation, Tech. report, 2014.
  • Lalley, S. P.; Sellke, T. A conditional limit theorem for the frontier of a branching Brownian motion. Ann. Probab. 15 (1987), no. 3, 1052--1061. MR0893913
  • P. Maillard and O. Zeitouni, Slowdown in branching Brownian motion with inhomogeneous variance, ArXiv e-prints (2013).
  • B. Mallein, Maximal displacement of a branching random walk in time-inhomogeneous environment, ArXiv e-prints (2013).
  • McKean, H. P. Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Comm. Pure Appl. Math. 28 (1975), no. 3, 323--331. MR0400428


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.