The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off

References

  • Abraham, Romain; Delmas, Jean-Francois; Hoscheit, Patrick. Exit times for an increasing Levy tree-valued process. Probab. Theory Related Fields 159 (2014), no. 1-2, 357--403. MR3201925
  • Abraham, Romain; Delmas, Jean-Francois. Changing the branching mechanism of a continuous state branching process using immigration. Ann. Inst. Henri Poincare Probab. Stat. 45 (2009), no. 1, 226--238. MR2500236
  • Abraham, Romain; Delmas, Jean-Francois. Williams' decomposition of the Levy continuum random tree and simultaneous extinction probability for populations with neutral mutations. Stochastic Process. Appl. 119 (2009), no. 4, 1124--1143. MR2508567
  • Abraham, Romain; Delmas, Jean-Francois; Voisin, Guillaume. Pruning a Levy continuum random tree. Electron. J. Probab. 15 (2010), no. 46, 1429--1473. MR2727317
  • Athreya, Krishna B.; Ney, Peter E. Branching processes. Die Grundlehren der mathematischen Wissenschaften, Band 196. Springer-Verlag, New York-Heidelberg, 1972. xi+287 pp. MR0373040
  • Berestycki, Julien; Berestycki, Nathanael; Limic, Vlada. The $\Lambda$-coalescent speed of coming down from infinity. Ann. Probab. 38 (2010), no. 1, 207--233. MR2599198
  • Bertoin, Jean. The structure of the allelic partition of the total population for Galton-Watson processes with neutral mutations. Ann. Probab. 37 (2009), no. 4, 1502--1523. MR2546753
  • Bertoin, Jean. A limit theorem for trees of alleles in branching processes with rare neutral mutations. Stochastic Process. Appl. 120 (2010), no. 5, 678--697. MR2603059
  • Bi, Hongwei. Time to most recent common ancestor for stationary continuous state branching processes with immigration. Front. Math. China 9 (2014), no. 2, 239--260. MR3171499
  • G. Bianconi, L. Ferretti and S. Franz: Non-neutral theory of biodiversity, Europhysics Letters 87 (2009), 28001.
  • Buiculescu, Mioara. On quasi-stationary distributions for multi-type Galton-Watson processes. J. Appl. Probability 12 (1975), 60--68. MR0365734
  • Champagnat, Nicolas; Lambert, Amaury; Richard, Mathieu. Birth and death processes with neutral mutations. Int. J. Stoch. Anal. 2012, Art. ID 569081, 20 pp. MR3008829
  • Champagnat, Nicolas; Rœlly, Sylvie. Limit theorems for conditioned multitype Dawson-Watanabe processes and Feller diffusions. Electron. J. Probab. 13 (2008), no. 25, 777--810. MR2399296
  • Chen, Yu-Ting; Delmas, Jean-Francois. Smaller population size at the MRCA time for stationary branching processes. Ann. Probab. 40 (2012), no. 5, 2034--2068. MR3025710
  • Dawson, Donald A. Measure-valued Markov processes. École d'Été de Probabilités de Saint-Flour XXI—1991, 1--260, Lecture Notes in Math., 1541, Springer, Berlin, 1993. MR1242575
  • J.-F. Delmas and O. Hénard: A Williams' decomposition for spatially dependent superprocesses, Electron. J. Probab. 18 (2013), 1--43.
  • Donnelly, Peter; Kurtz, Thomas G. Genealogical processes for Fleming-Viot models with selection and recombination. Ann. Appl. Probab. 9 (1999), no. 4, 1091--1148. MR1728556
  • Donnelly, Peter; Kurtz, Thomas G. Particle representations for measure-valued population models. Ann. Probab. 27 (1999), no. 1, 166--205. MR1681126
  • P. Donnelly, M. Nordborg and P. Joyce: phLikelihoods and simulation methods for a class of nonneutral population genetic models, Genetics 159 (2001), 853--867.
  • Duquesne, Thomas; Le Gall, Jean-Francois. Random trees, Levy processes and spatial branching processes. Asterisque No. 281 (2002), vi+147 pp. MR1954248
  • Fearnhead, Paul. The common ancestor at a nonneutral locus. J. Appl. Probab. 39 (2002), no. 1, 38--54. MR1895142
  • P. Fearnhead: Perfect simulation from nonneutral population genetic models: variable population size and population sub-division, Genetics 174 (2006), 1397--1406.
  • Fitzsimmons, P. J.; Fristedt, Bert; Shepp, L. A. The set of real numbers left uncovered by random covering intervals. Z. Wahrsch. Verw. Gebiete 70 (1985), no. 2, 175--189. MR0799145
  • C. Foucart and G. U. Bravo: phLocal extinction in continuous-state branching processes with immigration, ArXiv:1211.3699 (2012).
  • C. Foucart and O. Hénard: phStable continuous branching processes with immigration and Beta-Fleming-Viot processes with immigration, Electron. J. Probab. 18 (2013), 1--21.
  • Kawazu, Kiyoshi; Watanabe, Shinzo. Branching processes with immigration and related limit theorems. Teor. Verojatnost. i Primenen. 16 1971 34--51. MR0290475
  • Lamperti, John. The limit of a sequence of branching processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 7 1967 271--288. MR0217893
  • Le Gall, Jean-Francois. Ito's excursion theory and random trees. Stochastic Process. Appl. 120 (2010), no. 5, 721--749. MR2603061
  • Li, Zenghu. Measure-valued branching Markov processes. Probability and its Applications (New York). Springer, Heidelberg, 2011. xii+350 pp. ISBN: 978-3-642-15003-6 MR2760602
  • Nakagawa, Tetsuo. The $Q$-process associated with a multitype Galton-Watson process and the additional results. Bull. Gen. Ed. Dokkyo Univ. School Medicine 1 (1978), 21--32. MR0653216
  • C. Neuhauser and S. M. Krone: The genealogy of samples in models with selection, Genetics 145 (1997), 519--534.
  • Stephens, Matthew; Donnelly, Peter. Ancestral inference in population genetics models with selection (with discussion). Aust. N. Z. J. Stat. 45 (2003), no. 4, 395--430. MR2018460
  • Taylor, Jesse E. The common ancestor process for a Wright-Fisher diffusion. Electron. J. Probab. 12 (2007), no. 28, 808--847. MR2318411


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.