Portmanteau inequalities on the Poisson space: mixed regimes and multidimensional clustering

Solesne Bourguin (University of Luxembourg)
Giovanni Peccati (University of Luxembourg)

Abstract


Using Malliavin operators together with an interpolation technique inspired by Arratia, Goldstein and Gordon (1989), we prove a new inequality on the Poisson space, allowing one to measure the distance between the laws of a general random vector, and of a target random element composed of Gaussian and Poisson random variables. Several consequences are deduced from this result, in particular: (1) new abstract criteria for multidimensional stable convergence on the Poisson space, (2) a class of mixed limit theorems, involving both Poisson and Gaussian limits, (3) criteria for the asymptotic independence of U-statistics following Gaussian and Poisson asymptotic regimes. Our results generalize and unify several previous findings in the field. We provide an application to joint sub-graph counting in random geometric graphs.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-42

Publication Date: August 11, 2014

DOI: 10.1214/EJP.v19-2879

References

  • Adell, José Antonio; Lekuona, Alberto. Sharp estimates in signed Poisson approximation of Poisson mixtures. Bernoulli 11 (2005), no. 1, 47--65. MR2121455
  • Aldous, D. J.; Eagleson, G. K. On mixing and stability of limit theorems. Ann. Probability 6 (1978), no. 2, 325--331. MR0517416
  • Arratia, R.; Goldstein, L.; Gordon, L. Two moments suffice for Poisson approximations: the Chen-Stein method. Ann. Probab. 17 (1989), no. 1, 9--25. MR0972770
  • Barbour, A. D. Asymptotic expansions in the Poisson limit theorem. Ann. Probab. 15 (1987), no. 2, 748--766. MR0885141
  • Bhattacharya, Rabi N.; Ghosh, Jayanta K. A class of $U$-statistics and asymptotic normality of the number of $k$-clusters. J. Multivariate Anal. 43 (1992), no. 2, 300--330. MR1193616
  • Billingsley, Patrick. Convergence of probability measures. Second edition. Wiley Series in Probability and Statistics: Probability and Statistics. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1999. x+277 pp. ISBN: 0-471-19745-9 MR1700749
  • Barndorff-Nielsen, Ole E.; Shephard, Neil. Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics. J. R. Stat. Soc. Ser. B Stat. Methodol. 63 (2001), no. 2, 167--241. MR1841412
  • Chen, Louis H. Y.; Goldstein, Larry; Shao, Qi-Man. Normal approximation by Stein's method. Probability and its Applications (New York). Springer, Heidelberg, 2011. xii+405 pp. ISBN: 978-3-642-15006-7 MR2732624
  • S. Cohen and A. Lindner (2012). A central limit theorem for the sample autocorrelations of a Lévy driven continuous time moving average process. Preprint.
  • Corcuera, José Manuel; Nualart, David; Woerner, Jeannette H. C. Power variation of some integral fractional processes. Bernoulli 12 (2006), no. 4, 713--735. MR2248234
  • Daly, Fraser. Upper bounds for Stein-type operators. Electron. J. Probab. 13 (2008), no. 20, 566--587. MR2399291
  • De Blasi, Pierpaolo; Peccati, Giovanni; Prünster, Igor. Asymptotics for posterior hazards. Ann. Statist. 37 (2009), no. 4, 1906--1945. MR2533475
  • Decreusefond, L.; Ferraz, E. On the one dimensional Poisson random geometric graph. J. Probab. Stat. 2011, Art. ID 350382, 21 pp. MR2842939
  • A. Deya, S. Noreddine and I. Nourdin (2012). Fourth Moment Theorem and q-Brownian Chaos. Comm. Math. Phys., to appear.
  • Erhardsson, Torkel. Stein's method for Poisson and compound Poisson approximation. An introduction to Stein's method, 61--113, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 4, Singapore Univ. Press, Singapore, 2005. MR2235449
  • Dynkin, E. B.; Mandelbaum, A. Symmetric statistics, Poisson point processes, and multiple Wiener integrals. Ann. Statist. 11 (1983), no. 3, 739--745. MR0707925
  • Feigin, Paul D. Stable convergence of semimartingales. Stochastic Process. Appl. 19 (1985), no. 1, 125--134. MR0780725
  • Harnett, Daniel; Nualart, David. Weak convergence of the Stratonovich integral with respect to a class of Gaussian processes. Stochastic Process. Appl. 122 (2012), no. 10, 3460--3505. MR2956113
  • Heinrich, Lothar; Schmidt, Hendrik; Schmidt, Volker. Central limit theorems for Poisson hyperplane tessellations. Ann. Appl. Probab. 16 (2006), no. 2, 919--950. MR2244437
  • Jacod, J.; Sadi, H. Processus admettant un processus à accroissements indépendants tangent: cas général. (French) [Processes admitting a tangent process with independent increments: the general case] Séminaire de Probabilités, XXI, 479--514, Lecture Notes in Math., 1247, Springer, Berlin, 1987. MR0942000
  • Jacod, Jean; Shiryaev, Albert N. Limit theorems for stochastic processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 288. Springer-Verlag, Berlin, 1987. xviii+601 pp. ISBN: 3-540-17882-1 MR0959133
  • Jakubowski, Adam. Principle of conditioning in limit theorems for sums of random variables. Ann. Probab. 14 (1986), no. 3, 902--915. MR0841592
  • Jammalamadaka, S. Rao; Janson, Svante. Limit theorems for a triangular scheme of $U$-statistics with applications to inter-point distances. Ann. Probab. 14 (1986), no. 4, 1347--1358. MR0866355
  • Kabanov, Ju. M. Extended stochastic integrals. (Russian) Teor. Verojatnost. i Primenen. 20 (1975), no. 4, 725--737. MR0397877
  • Kemp, Todd; Nourdin, Ivan; Peccati, Giovanni; Speicher, Roland. Wigner chaos and the fourth moment. Ann. Probab. 40 (2012), no. 4, 1577--1635. MR2978133
  • Koroljuk, V. S.; Borovskich, Yu. V. Theory of $U$-statistics. Translated from the 1989 Russian original by P. V. Malyshev and D. V. Malyshev and revised by the authors. Mathematics and its Applications, 273. Kluwer Academic Publishers Group, Dordrecht, 1994. x+552 pp. ISBN: 0-7923-2608-3 MR1472486
  • R. Lachièze--Rey and G. Peccati (2011). Fine Gaussian fluctuations on the Poisson space I: contractions, cumulants and geometric random graphs. Preprint.
  • Lachièze-Rey, Raphaël. Concave majorant of stochastic processes and Burgers turbulence. J. Theoret. Probab. 25 (2012), no. 2, 313--332. MR2914431
  • G. Last, M. Penrose, M. Schulte, C. Thäle (2012). Moments and central limit theorems for some multivariate Poisson functionals. Preprint.
  • N.T. Minh (2011). Malliavin--Stein method for multi--dimensional U--statistics of Poisson point processes. Preprint.
  • Nourdin, Ivan; Nualart, David. Central limit theorems for multiple Skorokhod integrals. J. Theoret. Probab. 23 (2010), no. 1, 39--64. MR2591903
  • Nourdin, Ivan; Peccati, Giovanni. Stein's method on Wiener chaos. Probab. Theory Related Fields 145 (2009), no. 1-2, 75--118. MR2520122
  • I. Nourdin and G. Peccati (2011). Normal approximations using Malliavin calculus: from Stein's method to universality. Cambridge University Press.
  • Nualart, David; Vives, Josep. Anticipative calculus for the Poisson process based on the Fock space. Séminaire de Probabilités, XXIV, 1988/89, 154--165, Lecture Notes in Math., 1426, Springer, Berlin, 1990. MR1071538
  • G. Peccati (2012). The Chen--Stein method for Poisson functionals. Preprint. arXiv:1112.5051v2.
  • Peccati, Giovanni; Prünster, Igor. Linear and quadratic functionals of random hazard rates: an asymptotic analysis. Ann. Appl. Probab. 18 (2008), no. 5, 1910--1943. MR2462554
  • Peccati, G.; Solé, J. L.; Taqqu, M. S.; Utzet, F. Stein's method and normal approximation of Poisson functionals. Ann. Probab. 38 (2010), no. 2, 443--478. MR2642882
  • Peccati, Giovanni; Taqqu, Murad S. Stable convergence of generalized $L^ 2$ stochastic integrals and the principle of conditioning. Electron. J. Probab. 12 (2007), no. 15, 447--480. MR2299924
  • Peccati, Giovanni; Taqqu, Murad S. Limit theorems for multiple stochastic integrals. ALEA Lat. Am. J. Probab. Math. Stat. 4 (2008), 393--413. MR2461790
  • Peccati, Giovanni; Taqqu, Murad S. Central limit theorems for double Poisson integrals. Bernoulli 14 (2008), no. 3, 791--821. MR2537812
  • Peccati, Giovanni; Taqqu, Murad S. Stable convergence of multiple Wiener-Itô integrals. J. Theoret. Probab. 21 (2008), no. 3, 527--570. MR2425357
  • Peccati, Giovanni; Taqqu, Murad S. Wiener chaos: moments, cumulants and diagrams. A survey with computer implementation. Supplementary material available online. Bocconi & Springer Series, 1. Springer, Milan; Bocconi University Press, Milan, 2011. xiv+274 pp. ISBN: 978-88-470-1678-1 MR2791919
  • Peccati, Giovanni; Tudor, Ciprian A. Gaussian limits for vector-valued multiple stochastic integrals. Séminaire de Probabilités XXXVIII, 247--262, Lecture Notes in Math., 1857, Springer, Berlin, 2005. MR2126978
  • Peccati, Giovanni; Zheng, Cengbo. Multi-dimensional Gaussian fluctuations on the Poisson space. Electron. J. Probab. 15 (2010), no. 48, 1487--1527. MR2727319
  • Penrose, Mathew. Random geometric graphs. Oxford Studies in Probability, 5. Oxford University Press, Oxford, 2003. xiv+330 pp. ISBN: 0-19-850626-0 MR1986198
  • Podolskij, Mark; Vetter, Mathias. Understanding limit theorems for semimartingales: a short survey. Stat. Neerl. 64 (2010), no. 3, 329--351. MR2683464
  • J.--P. Portmanteau (1915). Espoir pour l'ensemble vide?. Annales de l'Université de Felletin CXLI, 322--325.
  • Privault, Nicolas. On the independence of multiple stochastic integrals with respect to a class of martingales. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), no. 5, 515--520. MR1408987
  • Privault, Nicolas. Stochastic analysis in discrete and continuous settings with normal martingales. Lecture Notes in Mathematics, 1982. Springer-Verlag, Berlin, 2009. x+310 pp. ISBN: 978-3-642-02379-8 MR2531026
  • Privault, Nicolas. Independence of some multiple Poisson stochastic integrals with variable-sign kernels. Stochastic processes, finance and control, 73--86, Adv. Stat. Probab. Actuar. Sci., 1, World Sci. Publ., Hackensack, NJ, 2012. MR2985434
  • M. Reitzner and M. Schulte (2011). Central Limit Theorems for U--Statistics of Poisson Point Processes. Preprint.
  • Rényi, Alfréd. On stable sequences of events. Sankhyā Ser. A 25 1963 293 302. MR0170385
  • Rosiński, J.; Samorodnitsky, G. Product formula, tails and independence of multiple stable integrals. Advances in stochastic inequalities (Atlanta, GA, 1997), 169--194, Contemp. Math., 234, Amer. Math. Soc., Providence, RI, 1999. MR1694771
  • Rubin, H.; Vitale, R. A. Asymptotic distribution of symmetric statistics. Ann. Statist. 8 (1980), no. 1, 165--170. MR0557561
  • Schneider, Rolf; Weil, Wolfgang. Stochastic and integral geometry. Probability and its Applications (New York). Springer-Verlag, Berlin, 2008. xii+693 pp. ISBN: 978-3-540-78858-4 MR2455326
  • Schulte, Matthias. A central limit theorem for the Poisson-Voronoi approximation. Adv. in Appl. Math. 49 (2012), no. 3-5, 285--306. MR3017961
  • Schulte, Matthias. A central limit theorem for the Poisson-Voronoi approximation. Adv. in Appl. Math. 49 (2012), no. 3-5, 285--306. MR3017961
  • M. Schulte and C. Thaele (2010). Exact and asymptotic results for intrinsic volumes of Poisson k--flat processes. Preprint.
  • Schulte, Matthias; Thäle, Christoph. The scaling limit of Poisson-driven order statistics with applications in geometric probability. Stochastic Process. Appl. 122 (2012), no. 12, 4096--4120. MR2971726
  • Silverman, Bernard; Brown, Tim. Short distances, flat triangles and Poisson limits. J. Appl. Probab. 15 (1978), no. 4, 815--825. MR0511059
  • Surgailis, D. On multiple Poisson stochastic integrals and associated Markov semigroups. Probab. Math. Statist. 3 (1984), no. 2, 217--239. MR0764148
  • Vitale, Richard A. Covariances of symmetric statistics. J. Multivariate Anal. 41 (1992), no. 1, 14--26. MR1156678
  • Xue, Xing Hong. On the principle of conditioning and convergence to mixtures of distributions for sums of dependent random variables. Stochastic Process. Appl. 37 (1991), no. 2, 175--186. MR1102868


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.