Quadratic variations for the fractional-colored stochastic heat equation

Soledad Torres (Universidad de Valparaíso)
Ciprian A. Tudor (Université de Lille 1)
Frederi G. Viens (Purdue University)

Abstract


Using multiple stochastic integrals and Malliavin calculus, we analyze the quadratic variations of a class of Gaussian processes that contains the linear stochastic heat equation on $\mathbf{R}^{d}$ driven by a non-white noise which is fractional Gaussian with respect to the time variable (Hurst parameter $H$) and has colored spatial covariance of $\alpha $-Riesz-kernel type. The processes in this class are self-similar in time with a parameter $K$ distinct from $H$, and have path regularity properties which are very close to those of fractional Brownian motion (fBm) with Hurst parameter $K$ (in the heat equation case, $K=H-(d-\alpha )/4$ ). However the processes exhibit marked inhomogeneities which cause naive heuristic renormalization arguments based on $K$ to fail, and require delicate computations to establish the asymptotic behavior of the quadratic variation. A phase transition between normal and non-normal asymptotics appears, which does not correspond to the familiar threshold $K=3/4$ known in the case of fBm. We apply our results to construct an estimator for $H$ and to study its asymptotic behavior.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-51

Publication Date: August 23, 2014

DOI: 10.1214/EJP.v19-2698

References

  • Balan, Raluca M.; Tudor, Ciprian A. The stochastic heat equation with fractional-colored noise: existence of the solution. ALEA Lat. Am. J. Probab. Math. Stat. 4 (2008), 57--87. MR2413088
  • Berzin, Corinne; León, José R. Estimation in models driven by fractional Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat. 44 (2008), no. 2, 191--213. MR2446320
  • Chronopoulou, Alexandra; Tudor, Ciprian A.; Viens, Frederi G. Self-similarity parameter estimation and reproduction property for non-Gaussian Hermite processes. Commun. Stoch. Anal. 5 (2011), no. 1, 161--185. MR2808541
  • Chronopoulou, Alexandra; Viens, Frederi G.; Tudor, Ciprian A. Variations and Hurst index estimation for a Rosenblatt process using longer filters. Electron. J. Stat. 3 (2009), 1393--1435. MR2578831
  • Cialenco, Igor. Parameter estimation for SPDEs with multiplicative fractional noise. Stoch. Dyn. 10 (2010), no. 4, 561--576. MR2740703
  • Cialenco, Igor; Lototsky, Sergey V.; Pospíšil, Jan. Asymptotic properties of the maximum likelihood estimator for stochastic parabolic equations with additive fractional Brownian motion. Stoch. Dyn. 9 (2009), no. 2, 169--185. MR2531625
  • Coeurjolly, Jean-François. Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths. Stat. Inference Stoch. Process. 4 (2001), no. 2, 199--227. MR1856174
  • Dalang, Robert C. Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.'s. Electron. J. Probab. 4 (1999), no. 6, 29 pp. (electronic). MR1684157
  • Eden, R.; Víquez, J.: Nourdin-Peccati analysis on Wiener and Wiener-Poisson space for general distributions. Preprint, (2012), 38 pp, ARXIV1202.6430
  • Fernique, Xavier. Fonctions aléatoires gaussiennes, vecteurs aléatoires gaussiens. (French) [Gaussian random functions, Gaussian random vectors] Université de Montréal, Centre de Recherches Mathématiques, Montreal, QC, 1997. iv+217 pp. ISBN: 2-921120-28-3 MR1472975
  • Fox, Robert; Taqqu, Murad S. Multiple stochastic integrals with dependent integrators. J. Multivariate Anal. 21 (1987), no. 1, 105--127. MR0877845
  • Guyon, Xavier; León, José. Convergence en loi des $H$-variations d'un processus gaussien stationnaire sur ${\bf R}$. (French) [Convergence in law of the $H$-variations of a stationary Gaussian process in ${\bf R}$] Ann. Inst. H. Poincaré Probab. Statist. 25 (1989), no. 3, 265--282. MR1023952
  • Hu, Yaozhong; Nualart, David. Parameter estimation for fractional Ornstein-Uhlenbeck processes. Statist. Probab. Lett. 80 (2010), no. 11-12, 1030--1038. MR2638974
  • Istas, Jacques; Lang, Gabriel. Quadratic variations and estimation of the local Hölder index of a Gaussian process. Ann. Inst. H. Poincaré Probab. Statist. 33 (1997), no. 4, 407--436. MR1465796
  • Kleptsyna, M. L.; Le Breton, A. Statistical analysis of the fractional Ornstein-Uhlenbeck type process. Stat. Inference Stoch. Process. 5 (2002), no. 3, 229--248. MR1943832
  • Maejima, Makoto; Tudor, Ciprian A. Wiener integrals with respect to the Hermite process and a non-central limit theorem. Stoch. Anal. Appl. 25 (2007), no. 5, 1043--1056. MR2352951
  • Major, Péter. Tail behaviour of multiple random integrals and $U$-statistics. Probab. Surv. 2 (2005), 448--505. MR2203678
  • Maslowski, Bohdan; Pospíšil, Jan. Ergodicity and parameter estimates for infinite-dimensional fractional Ornstein-Uhlenbeck process. Appl. Math. Optim. 57 (2008), no. 3, 401--429. MR2407319
  • Maslowski, Bohdan; Pospíšil, Jan. Parameter estimates for linear partial differential equations with fractional boundary noise. Commun. Inf. Syst. 7 (2007), no. 1, 1--20. MR2346576
  • Mueller, Carl; Wu, Zhixin. A connection between the stochastic heat equation and fractional Brownian motion, and a simple proof of a result of Talagrand. Electron. Commun. Probab. 14 (2009), 55--65. MR2481666
  • Nualart, Eulalia; Viens, Frederi. The fractional stochastic heat equation on the circle: time regularity and potential theory. Stochastic Process. Appl. 119 (2009), no. 5, 1505--1540. MR2513117
  • Ouahhabi, Hanae; Tudor, Ciprian A. Additive functionals of the solution to fractional stochastic heat equation. J. Fourier Anal. Appl. 19 (2013), no. 4, 777--791. MR3089423
  • Nourdin, Ivan. Selected aspects of fractional Brownian motion. Bocconi & Springer Series, 4. Springer, Milan; Bocconi University Press, Milan, 2012. x+122 pp. ISBN: 978-88-470-2822-7; 978-88-470-2823-4 MR3076266
  • Nourdin, Ivan; Peccati, Giovanni. Normal approximations with Malliavin calculus. From Stein's method to universality. Cambridge Tracts in Mathematics, 192. Cambridge University Press, Cambridge, 2012. xiv+239 pp. ISBN: 978-1-107-01777-1 MR2962301
  • Nourdin, Ivan; Peccati, Giovanni. Noncentral convergence of multiple integrals. Ann. Probab. 37 (2009), no. 4, 1412--1426. MR2546749
  • Nourdin, Ivan; Peccati, Giovanni. Stein's method on Wiener chaos. Probab. Theory Related Fields 145 (2009), no. 1-2, 75--118. MR2520122
  • Nourdin, Ivan; Peccati, Giovanni. Cumulants on the Wiener space. J. Funct. Anal. 258 (2010), no. 11, 3775--3791. MR2606872
  • Nourdin, Ivan; Rosinski, Jan. Asymptotic independence of multiple Wiener-Itô integrals and the resulting limit laws. Ann. Probab. 42 (2014), no. 2, 497--526. MR3178465
  • Nualart, David. The Malliavin calculus and related topics. Second edition. Probability and its Applications (New York). Springer-Verlag, Berlin, 2006. xiv+382 pp. ISBN: 978-3-540-28328-7; 3-540-28328-5 MR2200233
  • Nualart, D.; Ortiz-Latorre, S. Central limit theorems for multiple stochastic integrals and Malliavin calculus. Stochastic Process. Appl. 118 (2008), no. 4, 614--628. MR2394845
  • Nualart, David; Peccati, Giovanni. Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33 (2005), no. 1, 177--193. MR2118863
  • Pospíšil, Jan; Tribe, Roger. Parameter estimates and exact variations for stochastic heat equations driven by space-time white noise. Stoch. Anal. Appl. 25 (2007), no. 3, 593--611. MR2321899
  • Prakasa Rao, B. L. S. Parametric estimation for linear stochastic differential equations driven by fractional Brownian motion. Random Oper. Stochastic Equations 11 (2003), no. 3, 229--242. MR2009183
  • Swanson, Jason. Variations of the solution to a stochastic heat equation. Ann. Probab. 35 (2007), no. 6, 2122--2159. MR2353385
  • Tudor, Ciprian A. Analysis of the Rosenblatt process. ESAIM Probab. Stat. 12 (2008), 230--257. MR2374640
  • Tudor, C.A. and Viens, F.G.: Variations of the fractional Brownian motion via Malliavin calculus. Preprint, 2008, 13 pages.
  • Tudor, Ciprian A.; Viens, Frederi G. Statistical aspects of the fractional stochastic calculus. Ann. Statist. 35 (2007), no. 3, 1183--1212. MR2341703
  • Tudor, Ciprian A.; Viens, Frederi G. Variations and estimators for self-similarity parameters via Malliavin calculus. Ann. Probab. 37 (2009), no. 6, 2093--2134. MR2573552
  • Veillette, Mark S.; Taqqu, Murad S. Properties and numerical evaluation of the Rosenblatt distribution. Bernoulli 19 (2013), no. 3, 982--1005. MR3079303


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.