The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off

References

  • Angel, Omer; Crawford, Nicholas; Kozma, Gady. Localization for linearly edge reinforced random walks. Duke Math. J. 163 (2014), no. 5, 889--921. MR3189433
  • Benaim, Michel. A dynamical system approach to stochastic approximations. SIAM J. Control Optim. 34 (1996), no. 2, 437--472. MR1377706
  • Benaim, Michel; Raimond, Olivier; Schapira, Bruno. Strongly vertex-reinforced-random-walk on a complete graph. ALEA Lat. Am. J. Probab. Math. Stat. 10 (2013), no. 2, 767--782. MR3125746
  • Benveniste, Albert; Métivier, Michel; Priouret, Pierre. Adaptive algorithms and stochastic approximations. Translated from the French by Stephen S. Wilson. Applications of Mathematics (New York), 22. Springer-Verlag, Berlin, 1990. xii+365 pp. ISBN: 3-540-52894-6 MR1082341
  • Durrett, Rick. Probability: theory and examples. Fourth edition. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010. x+428 pp. ISBN: 978-0-521-76539-8 MR2722836
  • Kiefer, J.; Wolfowitz, J. Stochastic estimation of the maximum of a regression function. Ann. Math. Statistics 23, (1952). 462--466. MR0050243
  • Kovchegov, Yevgeniy. Multi-particle processes with reinforcements. J. Theoret. Probab. 21 (2008), no. 2, 437--448. MR2391254
  • Kushner, Harold J.; Clark, Dean S. Stochastic approximation methods for constrained and unconstrained systems. Applied Mathematical Sciences, 26. Springer-Verlag, New York-Berlin, 1978. x+261 pp. ISBN: 0-387-90341-0 MR0499560
  • Limic, Vlada. Attracting edge property for a class of reinforced random walks. Ann. Probab. 31 (2003), no. 3, 1615--1654. MR1989445
  • Limic, Vlada; Tarrès, Pierre. Attracting edge and strongly edge reinforced walks. Ann. Probab. 35 (2007), no. 5, 1783--1806. MR2349575
  • Ljung, Lennart. Analysis of recursive stochastic algorithms. IEEE Trans. Automatic Control AC-22 (1977), no. 4, 551--575. MR0465458
  • Pemantle, Robin. Nonconvergence to unstable points in urn models and stochastic approximations. Ann. Probab. 18 (1990), no. 2, 698--712. MR1055428
  • Pemantle, Robin. A survey of random processes with reinforcement. Probab. Surv. 4 (2007), 1--79. MR2282181
  • Pemantle, Robin; Volkov, Stanislav. Vertex-reinforced random walk on ${\bf Z}$ has finite range. Ann. Probab. 27 (1999), no. 3, 1368--1388. MR1733153
  • Robbins, Herbert; Monro, Sutton. A stochastic approximation method. Ann. Math. Statistics 22, (1951). 400--407. MR0042668
  • Tarrès, Pierre. Vertex-reinforced random walk on $\Bbb Z$ eventually gets stuck on five points. Ann. Probab. 32 (2004), no. 3B, 2650--2701. MR2078554


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.