The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off

References

  • Beck, József. Lower bounds on the approximation of the multivariate empirical process. Z. Wahrsch. Verw. Gebiete 70 (1985), no. 2, 289--306. MR0799151
  • Bentkus, V. Yu.; Lyubinskas, K. Rate of convergence in the invariance principle in Banach spaces. (Russian) Litovsk. Mat. Sb. 27 (1987), no. 3, 423--434. MR0925348
  • Borisov, I. S. Approximation of empirical fields that are constructed from vector observations with dependent coordinates. (Russian) Sibirsk. Mat. Zh. 23 (1982), no. 5, 31--41, 222. MR0673536
  • Borisov, I. S. An approach to the problem of approximation of distributions of sums of independent random elements. (Russian) Dokl. Akad. Nauk SSSR 272 (1983), no. 2, 271--275. MR0724499
  • Borisov, I. S. An accuracy of Gaussian approximation of sum distribution of independent random variables in Banach spaces. Probability theory and mathematical statistics (Kyoto, 1986), 28--54, Lecture Notes in Math., 1299, Springer, Berlin, 1988. MR0935975
  • Castelle, Nathalie; Laurent-Bonvalot, Françoise. Strong approximations of bivariate uniform empirical processes. Ann. Inst. H. Poincaré Probab. Statist. 34 (1998), no. 4, 425--480. MR1632841
  • Cirelʹson, B. S.; Ibragimov, I. A.; Sudakov, V. N. Norms of Gaussian sample functions. Proceedings of the Third Japan-USSR Symposium on Probability Theory (Tashkent, 1975), pp. 20--41. Lecture Notes in Math., Vol. 550, Springer, Berlin, 1976. MR0458556
  • Csörgő, M.; Révész, P. A new method to prove strassen type laws of invariance principle. II. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 31 (1975), no. 4, 261--269. MR1554018
  • Csörgő, M.; Révész, P. A strong approximation of the multivariate empirical process. Studia Sci. Math. Hungar. 10 (1975), no. 3-4, 427--434 (1978). MR0515344
  • Csörgő, Miklós; Horváth, Lajos. A note on strong approximations of multivariate empirical processes. Stochastic Process. Appl. 28 (1988), no. 1, 101--109. MR0936377
  • Delyon B.: Limit theorem for mixing processes. Tech. report IRISA, Rennes 1, 546, (1990).
  • Dedecker, Jérôme; Merlevède, Florence; Rio, Emmanuel. Strong approximation results for the empirical process of stationary sequences. Ann. Probab. 41 (2013), no. 5, 3658--3696. MR3127895
  • Dedecker, Jérôme; Prieur, Clémentine; Raynaud De Fitte, Paul. Parametrized Kantorovich-Rubinštein theorem and application to the coupling of random variables. Dependence in probability and statistics, 105--121, Lecture Notes in Statist., 187, Springer, New York, 2006. MR2283252
  • Dhompongsa, Sompong. A note on the almost sure approximation of the empirical process of weakly dependent random vectors. Yokohama Math. J. 32 (1984), no. 1-2, 113--121. MR0772909
  • Doukhan, Paul; Portal, Frédéric. Principe d'invariance faible pour la fonction de répartition empirique dans un cadre multidimensionnel et mélangeant. (French) [The weak invariance principle for the empirical distribution function in the multidimensional mixing case] Probab. Math. Statist. 8 (1987), 117--132. MR0928125
  • Dudley, R. M. Central limit theorems for empirical measures. Ann. Probab. 6 (1978), no. 6, 899--929 (1979). MR0512411
  • Dudley, R. M.; Philipp, Walter. Invariance principles for sums of Banach space valued random elements and empirical processes. Z. Wahrsch. Verw. Gebiete 62 (1983), no. 4, 509--552. MR0690575
  • Götze, F. On the rate of convergence in the central limit theorem in Banach spaces. Ann. Probab. 14 (1986), no. 3, 922--942. MR0841594
  • Horn, Roger A.; Johnson, Charles R. Topics in matrix analysis. Cambridge University Press, Cambridge, 1991. viii+607 pp. ISBN: 0-521-30587-X MR1091716
  • Kantorovitch, L. On the translocation of masses. C. R. (Doklady) Acad. Sci. URSS (N.S.) 37, (1942). 199--201. MR0009619
  • Kantorovič, L. V.; Rubinšteĭn, G. Š. On a space of completely additive functions. (Russian) Vestnik Leningrad. Univ. 13 1958 no. 7 52--59. MR0102006
  • Kiefer, J. Skorohod embedding of multivariate RV's, and the sample DF. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 24 (1972), no. 1, 1--35. MR1554013
  • Komlós, J.; Major, P.; Tusnády, G. An approximation of partial sums of independent ${\rm RV}$'s and the sample ${\rm DF}$. I. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 32 (1975), 111--131. MR0375412
  • Ledoux, Michel; Talagrand, Michel. Probability in Banach spaces. Isoperimetry and processes. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 23. Springer-Verlag, Berlin, 1991. xii+480 pp. ISBN: 3-540-52013-9 MR1102015
  • Liu, Jun S. Siegel's formula via Stein's identities. Statist. Probab. Lett. 21 (1994), no. 3, 247--251. MR1310101
  • Massart, Pascal. Strong approximation for multivariate empirical and related processes, via KMT constructions. Ann. Probab. 17 (1989), no. 1, 266--291. MR0972785
  • Merlevède, Florence; Rio, Emmanuel. Strong approximation of partial sums under dependence conditions with application to dynamical systems. Stochastic Process. Appl. 122 (2012), no. 1, 386--417. MR2860454
  • Neumann, Michael H. A central limit theorem for triangular arrays of weakly dependent random variables, with applications in statistics. ESAIM Probab. Stat. 17 (2013), 120--134. MR3021312
  • Peligrad, Magda; Utev, Sergey. Central limit theorem for stationary linear processes. Ann. Probab. 34 (2006), no. 4, 1608--1622. MR2257658
  • Philipp, Walter; Pinzur, Laurence. Almost sure approximation theorems for the multivariate empirical process. Z. Wahrsch. Verw. Gebiete 54 (1980), no. 1, 1--13. MR0595473
  • Rio, Emmanuel. Local invariance principles and their application to density estimation. Probab. Theory Related Fields 98 (1994), no. 1, 21--45. MR1254823
  • Rio, Emmanuel. Vitesses de convergence dans le principe d'invariance faible pour la fonction de répartition empirique multivariée. (French) [Rates of convergence in the weak invariance principle for the multivariate empirical distribution function] C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 2, 169--172. MR1373756
  • Rio, Emmanuel. Processus empiriques absolument réguliers et entropie universelle. (French) [Absolutely regular empirical processes and universal entropy] Probab. Theory Related Fields 111 (1998), no. 4, 585--608. MR1641838
  • Rio, Emmanuel. Théorie asymptotique des processus aléatoires faiblement dépendants. (French) [Asymptotic theory of weakly dependent random processes] Mathématiques & Applications (Berlin) [Mathematics & Applications], 31. Springer-Verlag, Berlin, 2000. x+169 pp. ISBN: 3-540-65979-X MR2117923
  • Rosenblatt, M. A central limit theorem and a strong mixing condition. Proc. Nat. Acad. Sci. U. S. A. 42 (1956), 43--47. MR0074711
  • Volkonskiĭ, V. A.; Rozanov, Yu. A. Some limit theorems for random functions. I. Theor. Probability Appl. 4 1959 178--197. MR0121856
  • Rüschendorf, Ludger. The Wasserstein distance and approximation theorems. Z. Wahrsch. Verw. Gebiete 70 (1985), no. 1, 117--129. MR0795791
  • Sakhanenko, A. I. Simple method of obtaining estimates in the invariance principle. Probability theory and mathematical statistics (Kyoto, 1986), 430--443, Lecture Notes in Math., 1299, Springer, Berlin, 1988. MR0936018
  • Sakhanenko, Alexander I. A new way to obtain estimates in the invariance principle. High dimensional probability, II (Seattle, WA, 1999), 223--245, Progr. Probab., 47, Birkhäuser Boston, Boston, MA, 2000. MR1857325
  • Skorohod, A. V. On a representation of random variables. (Russian) Teor. Verojatnost. i Primenen. 21 (1976), no. 3, 645--648. MR0428369
  • Tusnády, G. A remark on the approximation of the sample $DF$ in the multidimensional case. Period. Math. Hungar. 8 (1977), no. 1, 53--55. MR0443045
  • Wu, Wei Biao. Strong invariance principles for dependent random variables. Ann. Probab. 35 (2007), no. 6, 2294--2320. MR2353389


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.