The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


Adler, Robert J. The geometry of random fields. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, Ltd., Chichester, 1981. xi+280 pp. ISBN: 0-471-27844-0 MR0611857 (82h:60103)

Baxter, Glen. A strong limit theorem for Gaussian processes. Proc. Amer. Math. Soc. 7 (1956), 522--527. MR0090920 (19,890f)

Benassi, Albert; Cohen, Serge; Istas, Jacques; Jaffard, Stéphane. Identification of filtered white noises. Stochastic Process. Appl. 75 (1998), no. 1, 31--49. MR1629014 (99e:60104)

Benassi, Albert; Jaffard, Stéphane; Roux, Daniel. Elliptic Gaussian random processes. Rev. Mat. Iberoamericana 13 (1997), no. 1, 19--90. MR1462329 (98k:60056)

Wood, Andrew T. A.; Chan, Grace. Simulation of stationary Gaussian processes in $[0,1]sp d$. J. Comput. Graph. Statist. 3 (1994), no. 4, 409--432. MR1323050 (95k:65009)

Cheridito, Patrick; Kawaguchi, Hideyuki; Maejima, Makoto. Fractional Ornstein-Uhlenbeck processes. Electron. J. Probab. 8 (2003), no. 3, 14 pp. (electronic). MR1961165 (2003m:60096)

Coeurjolly, Jean-François. Inférence statistique pour les mouvements Brownien
fractionnaires et multifractionnaires. (French) PhD thesis, Université Joseph Fourier Grenoble I (2000).

Coeurjolly, Jean-François. Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths. Stat. Inference Stoch. Process. 4 (2001), no. 2, 199--227. MR1856174 (2002h:62265)

Cohen, Serge; Guyon, Xavier; Perrin, Olivier; Pontier,Monique. Singularity functions for fractional processes, and application to
fractional Brownian sheet. Preprint.

Dudley, R. M. Sample functions of the Gaussian process. Ann. Probability 1 (1973), no. 1, 66--103. MR0346884 (49 #11605)

Gladyv sev, E. G. A new limit theorem for stochastic processes with Gaussian increments. (Russian) Teor. Verojatnost. i Primenen 6 1961 57--66. MR0145574 (26 #3104)

Guyon, Xavier; León, José. Convergence en loi des $H$-variations d'un processus gaussien stationnaire sur $R$. (French) [Convergence in law of the $H$-variations of a stationary Gaussian process in $R$] Ann. Inst. H. Poincaré Probab. Statist. 25 (1989), no. 3, 265--282. MR1023952 (91d:60053)

Hanson, D. L.; Wright, F. T. A bound on tail probabilities for quadratic forms in independent random variables. Ann. Math. Statist. 42 1971 1079--1083. MR0279864 (43 #5585)

Istas, Jacques; Lang, Gabriel. Quadratic variations and estimation of the local Hölder index of a Gaussian process. Ann. Inst. H. Poincaré Probab. Statist. 33 (1997), no. 4, 407--436. MR1465796 (98e:60057)

Klein, Ruben; Giné, Evarist. On quadratic variation of processes with Gaussian increments. Ann. Probability 3 (1975), no. 4, 716--721. MR0378070 (51 #14239)

Lamperti, John. Semi-stable stochastic processes. Trans. Amer. Math. Soc. 104 1962 62--78. MR0138128 (25 #1575)

Lévy, Paul. Le mouvement brownien plan. (French) Amer. J. Math. 62, (1940). 487--550. MR0002734 (2,107g)

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.