The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • Aspandiiarov, S.; Iasnogorodski, R. Tails of passage-times and an application to stochastic processes with boundary reflection in wedges. Stochastic Process. Appl. 66 (1997), no. 1, 115-145. MR1431874
  • Aspandiiarov, S.; Iasnogorodski, R.; Menshikov, M. Passage-time moments for nonnegative stochastic processes and an application to reflected random walks in a quadrant. Ann. Probab. 24 (1996), no. 2, 932-960. MR1404537
  • Baum, L.E. On convergence to $+\infty$ in the law of large numbers. Ann. Math. Statist. 34 (1963), 219-222. MR0143240
  • Baum, L.E.; Katz, M. Convergence rates in the law of large numbers. Trans. Amer. Math. Soc. 120 (1965), 108-123. MR0198524
  • Chow, Y.S.; Zhang, C.-H. A note on Feller's strong law of large numbers. Ann. Probab. 14 (1986), no. 3, 1088-1094. MR0841610
  • Denisov, D.; Foss, S.; Korshunov, D. Tail asymptotics for the supremum of a random walk when the mean is not finite. Queueing Syst. 46 (2004), no. 1-2, 15-33. MR2072274
  • Derman, C.; Robbins, H. The strong law of large numbers when the first moment does not exist. Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 586-587. MR0070873
  • Erickson, K.B. The strong law of large numbers when the mean is undefined. Trans. Amer. Math. Soc. 185 (1973), 371-381. MR0336806
  • Falin, G.I. Ergodicity of random walks in a semistrip. (Russian) Mat. Zametki 44 (1988), no. 2, 225-230, 287; translation in Math. Notes 44 (1988), no. 1-2, 606-608 MR0969272
  • Fayolle, G.; Malyshev, V.A.; Menshikov, M.V. Topics in the constructive theory of countable Markov chains. Cambridge University Press, Cambridge, 1995. iv+169 pp. ISBN: 0-521-46197-9 MR1331145
  • Feller, W. A limit theorem for random variables with infinite moments. Amer. J. Math. 68 (1946), 257-262. MR0016569
  • Gillis, J. Correlated random walk. Proc. Cambridge Philos. Soc. 51 (1955), 639-651. MR0072382
  • Griffin, P.S. An integral test for the rate of escape of $d$-dimensional random walk. Ann. Probab. 11 (1983), no. 4, 953-961. MR0714958
  • Gut, A. Probability: a graduate course. Springer Texts in Statistics. Springer, New York, 2005. xxiv+603 pp. ISBN: 0-387-22833-0 MR2125120
  • Hu, Y.; Nyrhinen, H. Large deviations view points for heavy-tailed random walks. J. Theoret. Probab. 17 (2004), no. 3, 761-768. MR2091560
  • Jara, M.; Komorowski, T.; Olla, S. Limit theorems for additive functionals of a Markov chain. Ann. Appl. Probab. 19 (2009), no. 6, 2270-2300. MR2588245
  • Kallenberg, O. Foundations of modern probability. Second edition. Probability and its Applications. Springer-Verlag, New York, 2002. xx+638 pp. ISBN: 0-387-95313-2 MR1876169
  • Kesten, H. The limit points of a normalized random walk. Ann. Math. Statist. 41 (1970), 1173-1205. MR0266315
  • Kesten, H.; Maller, R.A. Two renewal theorems for general random walks tending to infinity. Probab. Theory Related Fields 106 (1996), no. 1, 1-38. MR1408415
  • Kesten, H.; Maller, R.A. Random walks crossing power law boundaries. Studia Sci. Math. Hungar. 34 (1998), no. 1-3, 219-252. MR1645198
  • Key, E.S. Recurrence and transience criteria for random walk in a random environment. Ann. Probab. 12 (1984), no. 2, 529-560. MR0735852
  • Kipnis, C.; Varadhan, S.R.S. Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm. Math. Phys. 104 (1986), no. 1, 1-19. MR0834478
  • Krámli, A.; Szász, D. Random walks with internal degrees of freedom. I. Local limit theorems. Z. Wahrsch. Verw. Gebiete 63 (1983), no. 1, 85-95. MR0699788
  • Kruglov, V.M. A strong law of large numbers for pairwise independent identically distributed random variables with infinite means. Statist. Probab. Lett. 78 (2008), no. 7, 890-895. MR2398364
  • Lamperti, J. Criteria for the recurrence or transience of stochastic process. I. J. Math. Anal. Appl. 1 (1960), 314-330. MR0126872
  • Lamperti, J. Criteria for stochastic processes. II. Passage-time moments. J. Math. Anal. Appl. 7 (1963), 127-145. MR0159361
  • Loève, M. Probability theory. I. Fourth edition. Graduate Texts in Mathematics, Vol. 45. Springer-Verlag, New York-Heidelberg, 1977. xvii+425 pp. MR0651017
  • Malyshev, V.A. Homogeneous random walks on the product of finite set and a half-line, Veroyatnostnye Metody Issledovania (Probability Methods of Investigation) (A.N. Kolmogorov, ed.), vol. 41, Moscow State University, Moscow, 1972, pp. 5--13 (Russian).
  • Menshikov, M.V.; Vachkovskaia, M.; Wade, A.R. Asymptotic behaviour of randomly reflecting billiards in unbounded tubular domains. J. Stat. Phys. 132 (2008), no. 6, 1097-1133. MR2430776
  • Menshikov, M.V.; Wade, A.R. Rate of escape and central limit theorem for the supercritical Lamperti problem. Stochastic Process. Appl. 120 (2010), no. 10, 2078-2099. MR2673989
  • Merkl, F.; Rolles, S.W.W. Edge-reinforced random walk on a ladder. Ann. Probab. 33 (2005), no. 6, 2051-2093. MR2184091
  • Pruitt, W.E. The rate of escape of random walk. Ann. Probab. 18 (1990), no. 4, 1417-1461. MR1071803
  • Resnick, S. Adventures in stochastic processes. Birkhäuser, Boston, MA, 1992. xii+626 pp. ISBN: 0-8176-3591-2 MR1181423
  • Rogers, L.C.G. Recurrence of additive functionals of Markov chains. Sankhyā Ser. A 47 (1985), no. 1, 47-56. MR0813443
  • Sato, K.-I. Lévy processes and infinitely divisible distributions. Cambridge Studies in Advanced Mathematics, 68. Cambridge University Press, Cambridge, 1999. xii+486 pp. ISBN: 0-521-55302-4 MR1739520
  • Shepp, L.A. Symmetric random walk. Trans. Amer. Math. Soc. 104 (1962), 144-153. MR0139212
  • Shepp, L.A. Recurrent random walks with arbitrarily large steps. Bull. Amer. Math. Soc. 70 (1964), 540-542. MR0169305
  • Stout, W.F. Almost sure convergence. Probability and Mathematical Statistics, Vol. 24. Academic Press, New York, 1974. x+381 pp. MR0455094

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.