The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • Basrak, Bojan. Limit theorems for the inductive mean on metric trees. J. Appl. Probab. 47 (2010), no. 4, 1136--1149. MR2752884
  • Bhattacharya, Rabi; Patrangenaru, Vic. Large sample theory of intrinsic and extrinsic sample means on manifolds. I. Ann. Statist. 31 (2003), no. 1, 1--29. MR1962498
  • Bhattacharya, Rabi; Patrangenaru, Vic. Large sample theory of intrinsic and extrinsic sample means on manifolds. II. Ann. Statist. 33 (2005), no. 3, 1225--1259. MR2195634
  • Billera, Louis J.; Holmes, Susan P.; Vogtmann, Karen. Geometry of the space of phylogenetic trees. Adv. in Appl. Math. 27 (2001), no. 4, 733--767. MR1867931
  • Bridson, Martin R.; Haefliger, André. Metric spaces of non-positive curvature. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 319. Springer-Verlag, Berlin, 1999. xxii+643 pp. ISBN: 3-540-64324-9 MR1744486
  • Dryden, I. L.; Mardia, K. V. Statistical shape analysis. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley & Sons, Ltd., Chichester, 1998. xx+347 pp. ISBN: 0-471-95816-6 MR1646114
  • Felsenstein, J.: Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39 (1985), 783--791.
  • Hendriks, Harrie; Landsman, Zinoviy. Asymptotic behavior of sample mean location for manifolds. Statist. Probab. Lett. 26 (1996), no. 2, 169--178. MR1381468
  • Hendriks, Harrie; Landsman, Zinoviy. Mean location and sample mean location on manifolds: asymptotics, tests, confidence regions. J. Multivariate Anal. 67 (1998), no. 2, 227--243. MR1659156
  • Holmes, Susan. Bootstrapping phylogenetic trees: theory and methods. Silver anniversary of the bootstrap. Statist. Sci. 18 (2003), no. 2, 241--255. MR2026083
  • Holmes, S.: Statistics for phylogenetic trees. Theoretical Population Biology 63 (2003), 17--32.
  • Holmes, S.: Statistical approach to tests involving phylogenies. In: Mathematics of Evolution and Phylogeny, O. Gascuel Editor. Oxford University Press, USA, 2007.
  • Hotz, T., Huckemann, S., Le, H., Marron, J. S., Mattingly, J. C., Miller, E., Nolen, J., Owen, M., Patrangenaru, V. and Skwerer, S.: Sticky central limit theorems on open books. Ann. Appl. Probab. to appear, (2012). arXiv:1202.4267.
  • Goresky, Mark; MacPherson, Robert. Stratified Morse theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 14. Springer-Verlag, Berlin, 1988. xiv+272 pp. ISBN: 3-540-17300-5 MR0932724
  • Kendall, D. G.; Barden, D.; Carne, T. K.; Le, H. Shape and shape theory. Wiley Series in Probability and Statistics. John Wiley & Sons, Ltd., Chichester, 1999. xii+306 pp. ISBN: 0-471-96823-4 MR1891212
  • Kendall, Wilfrid S.; Le, Huiling. Limit theorems for empirical Fréchet means of independent and non-identically distributed manifold-valued random variables. Braz. J. Probab. Stat. 25 (2011), no. 3, 323--352. MR2832889
  • Miller, E., Owen, M. and Provan, S.: Averaging metric phylogenetic trees. In preparation, (2012).
  • Owen, Megan. Computing geodesic distances in tree space. SIAM J. Discrete Math. 25 (2011), no. 4, 1506--1529. MR2873201
  • Owen, M. and Provan, J. S.: A fast algorithm for computing geodesic distances in tree space. IEEE/ACM Trans. Computational Biology and Bioinformatics 8 (2011), 2--13.
  • Sturm, Karl-Theodor. Probability measures on metric spaces of nonpositive curvature. Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), 357--390, Contemp. Math., 338, Amer. Math. Soc., Providence, RI, 2003. MR2039961
  • Vogtmann, K. (2007) Geodesics in the space of trees, (2007),
  • Ziezold, Herbert. On expected figures and a strong law of large numbers for random elements in quasi-metric spaces. Transactions of the Seventh Prague Conference on Information Theory, Statistical Decision Functions, Random Processes and of the Eighth European Meeting of Statisticians (Tech. Univ. Prague, Prague, 1974), Vol. A, pp. 591--602. Reidel, Dordrecht, 1977. MR0501230
  • Z. Yang, Z. and Rannala, B.: (1997) Bayesian phylogenetic inference using DNA sequences: a Markov chain Monte Carlo method. Molecular Biology and Evolution 14 (1997), 717-724.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.