On properties of a flow generated by an SDE with discontinuous drift

Olga Aryasova (Institute of Geophysics, National Academy of Sciences of Ukraine)
Andrey Pilipenko (Institute of Mathematics, National Academy of Sciences of Ukraine)


We consider a stochastic flow on $\mathbb{R}$ generated by an SDE with its drift being a function of bounded variation. We show that the flow is differentiable with respect to the initial conditions. Asymptotic  properties of the flow are studied.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-20

Publication Date: December 22, 2012

DOI: 10.1214/EJP.v17-2138


  • Attanasio, Stefano. Stochastic flows of diffeomorphisms for one-dimensional SDE with discontinuous drift. Electron. Commun. Probab. 15 (2010), 213--226. MR2653726
  • Barlow, Martin; Burdzy, Krzysztof; Kaspi, Haya; Mandelbaum, Avi. Coalescence of skew Brownian motions. Séminaire de Probabilités, XXXV, 202--205, Lecture Notes in Math., 1755, Springer, Berlin, 2001. MR1837288
  • Billingsley, Patrick. Convergence of probability measures. John Wiley & Sons, Inc., New York-London-Sydney 1968 xii+253 pp. MR0233396
  • Bouleau, Nicolas; Hirsch, Francis. Dirichlet forms and analysis on Wiener space. de Gruyter Studies in Mathematics, 14. Walter de Gruyter & Co., Berlin, 1991. x+325 pp. ISBN: 3-11-012919-1 MR1133391
  • Burdzy, Krzysztof; Kaspi, Haya. Lenses in skew Brownian flow. Ann. Probab. 32 (2004), no. 4, 3085--3115. MR2094439
  • Flandoli, F.; Gubinelli, M.; Priola, E. Flow of diffeomorphisms for SDEs with unbounded Hölder continuous drift. Bull. Sci. Math. 134 (2010), no. 4, 405--422. MR2651899
  • Garsia, A. M.; Rodemich, E.; Rumsey, H., Jr. A real variable lemma and the continuity of paths of some Gaussian processes. Indiana Univ. Math. J. 20 1970/1971 565--578. MR0267632
  • Gīhman, Ĭ. Ī.; Skorohod, A. V. Stochastic differential equations. Translated from the Russian by Kenneth Wickwire. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 72. Springer-Verlag, New York-Heidelberg, 1972. viii+354 pp. MR0346904
  • Harrison, J. M.; Shepp, L. A. On skew Brownian motion. Ann. Probab. 9 (1981), no. 2, 309--313. MR0606993
  • Ikeda, Nobuyuki; Watanabe, Shinzo. Stochastic differential equations and diffusion processes. North-Holland Mathematical Library, 24. North-Holland Publishing Co., Amsterdam-New York; Kodansha, Ltd., Tokyo, 1981. xiv+464 pp. ISBN: 0-444-86172-6 MR0637061
  • Kulik, A. M.; Pilipenko, A. Yu. Nonlinear transformations of smooth measures on infinite-dimensional spaces. (Russian) Ukraïn. Mat. Zh. 52 (2000), no. 9, 1226--1250; translation in Ukrainian Math. J. 52 (2000), no. 9, 1403--1431 (2001) MR1816936
  • Kunita, Hiroshi. Stochastic flows and stochastic differential equations. Cambridge Studies in Advanced Mathematics, 24. Cambridge University Press, Cambridge, 1990. xiv+346 pp. ISBN: 0-521-35050-6 MR1070361
  • Lions, P.-L.; Sznitman, A.-S. Stochastic differential equations with reflecting boundary conditions. Comm. Pure Appl. Math. 37 (1984), no. 4, 511--537. MR0745330
  • McKean, H. P., Jr. Stochastic integrals. Probability and Mathematical Statistics, No. 5 Academic Press, New York-London 1969 xiii+140 pp. MR0247684
  • Nakao, Shintaro. Comparison theorems for solutions of one-dimensional stochastic differential equations. Proceedings of the Second Japan-USSR Symposium on Probability Theory (Kyoto, 1972), pp. 310--315. Lecture Notes in Math., Vol. 330, Springer, Berlin, 1973. MR0445609
  • Nikolsky, S. M. A course of mathematical analysis. Vol. 2. Translated from the Russian by V. M. Volosov. Mir Publishers, Moscow, 1977. 442 pp. MR0466436
  • Portenko, N. I. Generalized diffusion processes. Translated from the Russian by H. H. McFaden. Translations of Mathematical Monographs, 83. American Mathematical Society, Providence, RI, 1990. x+180 pp. ISBN: 0-8218-4538-1 MR1104660
  • Revuz, Daniel; Yor, Marc. Continuous martingales and Brownian motion. Third edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 293. Springer-Verlag, Berlin, 1999. xiv+602 pp. ISBN: 3-540-64325-7 MR1725357
  • Zvonkin, A. K. A transformation of the phase space of a diffusion process that will remove the drift. (Russian) Mat. Sb. (N.S.) 93(135) (1974), 129--149, 152. MR0336813

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.