The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • E. Aïdékon, J. Berestycki, É. Brunet, and Z. Shi. The branching brownian motion seen from its tip. arXiv:1104.3738, 2011.
  • Arguin, L.-P.; Bovier, A.; Kistler, N. Genealogy of extremal particles of branching Brownian motion. Comm. Pure Appl. Math. 64 (2011), no. 12, 1647--1676. MR2838339
  • L.-P. Arguin, A. Bovier, and N. Kistler. Poissonian statistics in the extremal process of branching brownian motion. To appear in Ann. Appl. Probab., 2012.
  • F. Aurzada and S. Dereich. Universality of the asymptotics of the one-sided exit problem for integrated processes. To appear in Ann. Inst. Henri Poincaré Probab. Stat., 2012.
  • T. Alberts, K. Khanin, and J. Quastel. The intermediate disorder regime for directed polymers in dimension 1+1. arXiv:1202.4398v1 [math.PR], 2012.
  • Aïdékon, Elie; Shi, Zhan. Weak convergence for the minimal position in a branching random walk: a simple proof. Period. Math. Hungar. 61 (2010), no. 1-2, 43--54. MR2728431
  • E. Aïdékon and Z. Shi. The Seneta-Heyde scaling for the branching random walk. arXiv:1102.0217, 2011.
  • Biggins, J. D. Martingale convergence in the branching random walk. J. Appl. Probability 14 (1977), no. 1, 25--37. MR0433619
  • Bovier, Anton; Kurkova, Irina. Derrida's generalized random energy models. II. Models with continuous hierarchies. Ann. Inst. H. Poincaré Probab. Statist. 40 (2004), no. 4, 481--495. MR2070335
  • Bolthausen, Erwin. On a functional central limit theorem for random walks conditioned to stay positive. Ann. Probability 4 (1976), no. 3, 480--485. MR0415702
  • Buffet, E.; Patrick, A.; Pulé, J. V. Directed polymers on trees: a martingale approach. J. Phys. A 26 (1993), no. 8, 1823--1834. MR1220795
  • J. Barral, R. Rhodes, and V. Vargas. Limiting laws of supercritical branching random walks. arXiv:1203.5445, 2012.
  • Derrida, B.; Spohn, H. Polymers on disordered trees, spin glasses, and traveling waves. New directions in statistical mechanics (Santa Barbara, CA, 1987). J. Statist. Phys. 51 (1988), no. 5-6, 817--840. MR0971033
  • Hu, Yueyun; Shi, Zhan. Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees. Ann. Probab. 37 (2009), no. 2, 742--789. MR2510023
  • Johnson, Torrey; Waymire, Edward C. Tree polymers in the infinite volume limit at critical strong disorder. J. Appl. Probab. 48 (2011), no. 3, 885--891. MR2884824
  • Komlós, J.; Major, P.; Tusnády, G. An approximation of partial sums of independent RV's, and the sample DF. II. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 34 (1976), no. 1, 33--58. MR0402883
  • Kozlov, M. V. The asymptotic behavior of the probability of non-extinction of critical branching processes in a random environment. (Russian) Teor. Verojatnost. i Primenen. 21 (1976), no. 4, 813--825. MR0428492
  • Kahane, J.-P.; Peyrière, J. Sur certaines martingales de Benoit Mandelbrot. Advances in Math. 22 (1976), no. 2, 131--145. MR0431355
  • T. Madaule. Convergence in law for the branching random walk seen from its tip. arXiv:1107.2543, 2011.
  • Mörters, Peter; Ortgiese, Marcel. Minimal supporting subtrees for the free energy of polymers on disordered trees. J. Math. Phys. 49 (2008), no. 12, 125203, 21 pp. MR2484334
  • Shreve, Steven E. Stochastic calculus for finance. II. Continuous-time models. Springer Finance. Springer-Verlag, New York, 2004. xx+550 pp. ISBN: 0-387-40101-6 MR2057928

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.