The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • A. Ayache; J. Lévy Véhel. The generalized multifractional Brownian motion. Stat. Inference Stoch. Process. 3 (2000), no. 1-2, 7--18. MR1819282
  • S. Bianchi; A. Pianese. Modelling stock price movements: multifractality or multifractionality? Quant. Finance 7 (2007), no. 3, 301--319. MR2332737
  • A. Benassi ; S. Jaffard; D. Roux. Elliptic Gaussian random processes. Rev. Mat. Iberoamericana 13 (1997), no. 1, 19--90. MR1462329
  • P. Legrand; J. Lévy Véhel, Holderian regularity-based image interpolation, ICASSP06, International Conference on Acoustics, Speech, and Signal Processing, 2006.
  • K. J. Falconer. The local structure of random processes. J. London Math. Soc. (2) 67 (2003), no. 3, 657--672. MR1967698
  • K.J. Falconer. Localisable, multifractional and multistable processes, Séminaires et Congrès, 28, 1--12, 2012.
  • A.N. Kolmogoroff. A. N. Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. (German) C. R. (Doklady) Acad. Sci. URSS (N.S.) 26, (1940). 115--118. MR0003441
  • A. Ayache; M. S. Taqqu. Multifractional processes with random exponent. Publ. Mat. 49 (2005), no. 2, 459--486. MR2177638
  • A.Ayache ; S. Cohen; J. Lévy Véhel. The covariance of the multifractional Brownian motion and applications to long-range dependence, ICASSP00, International Conference on Acoustics, Speech, and Signal Processing, 2000.
  • B.B. Mandelbrot; J. .W Van Ness. Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 1968 422--437. MR0242239
  • K. Daoudi; J. Lévy Véhel; Y. Meyer. Construction of continuous functions with prescribed local regularity. Constr. Approx. 14 (1998), no. 3, 349--385. MR1626706
  • R.F. Peltier; J. Lévy Véhel. Multifractional Brownian motion: definition and preliminary results, INRIA Research Report 2645, 1995.
  • S.A. Stoev; M.S. Taqqu. How rich is the class of multifractional Brownian motions? Stochastic Process. Appl. 116 (2006), no. 2, 200--221. MR2197974
  • C. Tricot. Curves and fractal dimension. With a foreword by Michel Mendès France. Translated from the 1993 French original. Springer-Verlag, New York, 1995. xiv+323 pp. ISBN: 0-387-94095-2 MR1302173
  • FracLab, a MatLab toolbox for signal and image analysis. Available at
  • A. Echelard; O. Barrière; J. Lévy Véhel. Terrain modelling with multifractional Brownian motion and self-regulating processes, Lecture Notes in Computer Science, 6374, 342--351, Springer, 2010.
  • O. Barrière; J. Lévy Véhel. Intervalles interbattements cardiaques et processus auto-régulé multifractionnaire. (French) [Application of the self-regulating multifractional process to cardiac interbeat intervals] J. SFdS 150 (2009), no. 1, 54--72. MR2609697
  • A. Echelard; J. Lévy Véhel. Self-regulating processes-based modelling for arrhythmia characterization, ISPHT 2012, International Conference on Imaging and Signal Processing in Health Care and Technology, 2012.
  • A. Echelard; J. Lévy Véhel; A. Philippe. Estimating the self-regulating function of self-regulating midpoint displacement processes, preprint, 2012.
  • R. Fischer; M. Akay; P. Castiglioni; M. Di Rienzo. Multi- and monofractral indices of short-term heart variability, Medical & Biological Engineering & Computing, 5 (41), 543--549, 2003.
  • K. Weierstrass. On Continuous Function of a Real Argument that do not have a Well­-Defined Differential Quotient, Mathematische Werke, 2, 71--74, 1895.
  • G.H. Hardy. Weierstrass's non-differentiable function. Trans. Amer. Math. Soc. 17 (1916), no. 3, 301--325. MR1501044
  • A.T. Wood; G. Chan. Simulation of stationary Gaussian processes in $[0,1]^ d$. J. Comput. Graph. Statist. 3 (1994), no. 4, 409--432. MR1323050

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.