The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • Athreya, Siva R.; Swart, Jan M. Branching-coalescing particle systems. Probab. Theory Related Fields 131 (2005), no. 3, 376--414. MR2123250
  • Athreya, Siva R.; Swart, Jan M. Erratum: Branching-coalescing particle systems [ MR2123250]. Probab. Theory Related Fields 145 (2009), no. 3-4, 639--640. MR2529442
  • Athreya, Siva R.; Swart, Jan M. Correction to: Branching-coalescing particle systems. arXiv:0904.2288v1
  • Bass, Richard F. Diffusions and elliptic operators. Probability and its Applications (New York). Springer-Verlag, New York, 1998. xiv+232 pp. ISBN: 0-387-98315-5 MR1483890
  • Bramson, Maury; Gray, Lawrence. The survival of branching annihilating random walk. Z. Wahrsch. Verw. Gebiete 68 (1985), no. 4, 447--460. MR0772192
  • Chen, Mu Fa. Existence theorems for interacting particle systems with noncompact state spaces. Sci. Sinica Ser. A 30 (1987), no. 2, 148--156. MR0892470
  • Dawson, Donald A. Measure-valued Markov processes. École d'Été de Probabilités de Saint-Flour XXI—1991, 1--260, Lecture Notes in Math., 1541, Springer, Berlin, 1993. MR1242575
  • Ding, Wan Ding; Durrett, Richard; Liggett, Thomas M. Ergodicity of reversible reaction diffusion processes. Probab. Theory Related Fields 85 (1990), no. 1, 13--26. MR1044295
  • Bramson, Maury; Ding, Wan Ding; Durrett, Rick. Annihilating branching processes. Stochastic Process. Appl. 37 (1991), no. 1, 1--17. MR1091690
  • Durrett, Rick. A new method for proving the existence of phase transitions. Spatial stochastic processes, 141--169, Progr. Probab., 19, Birkhäuser Boston, Boston, MA, 1991. MR1144095
  • Ethier, Stewart N.; Kurtz, Thomas G. Markov processes. Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1986. x+534 pp. ISBN: 0-471-08186-8 MR0838085
  • Evans, Steven N.; Perkins, Edwin. Absolute continuity results for superprocesses with some applications. Trans. Amer. Math. Soc. 325 (1991), no. 2, 661--681. MR1012522
  • Griffiths, R. C. On the distribution of allele frequencies in a diffusion model. Theoret. Population Biol. 15 (1979), no. 1, 140--158. MR0528914
  • Griffiths, R. C. A transition density expansion for a multi-allele diffusion model. Adv. in Appl. Probab. 11 (1979), no. 2, 310--325. MR0526415
  • Harris, T. E. On a class of set-valued Markov processes. Ann. Probability 4 (1976), no. 2, 175--194. MR0400468
  • Hewitt, Edwin; Stromberg, Karl. Real and abstract analysis. A modern treatment of the theory of functions of a real variable. Third printing. Graduate Texts in Mathematics, No. 25. Springer-Verlag, New York-Heidelberg, 1975. x+476 pp. MR0367121
  • S.M. Krone and C. Neuhauser. Ancestral processes with selection. Theor. Popul. Biol.~51(3), 210--237, 1997.
  • Liggett, Thomas M. Interacting particle systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 276. Springer-Verlag, New York, 1985. xv+488 pp. ISBN: 0-387-96069-4 MR0776231
  • Liggett, Thomas M.; Spitzer, Frank. Ergodic theorems for coupled random walks and other systems with locally interacting components. Z. Wahrsch. Verw. Gebiete 56 (1981), no. 4, 443--468. MR0621659
  • Pal, Soumik. Analysis of market weights under volatility-stabilized market models. Ann. Appl. Probab. 21 (2011), no. 3, 1180--1213. MR2830616
  • L. Schwartz. Radon Measures on Arbitrary Topological Spaces and Cylindical Measures. Tata Institute, Oxford University Press, London, 1973. MR0426084
  • Sturm, Anja; Swart, Jan. Voter models with heterozygosity selection. Ann. Appl. Probab. 18 (2008), no. 1, 59--99. MR2380891
  • Sudbury, Aidan; Lloyd, Peter. Quantum operators in classical probability theory. II. The concept of duality in interacting particle systems. Ann. Probab. 23 (1995), no. 4, 1816--1830. MR1379169
  • Sudbury, Aidan; Lloyd, Peter. Quantum operators in classical probability theory. IV. Quasi-duality and thinnings of interacting particle systems. Ann. Probab. 25 (1997), no. 1, 96--114. MR1428501
  • Shiga, Tokuzo; Uchiyama, Kōhei. Stationary states and their stability of the stepping stone model involving mutation and selection. Probab. Theory Relat. Fields 73 (1986), no. 1, 87--117. MR0849066
  • Sudbury, Aidan. The branching annihilating process: an interacting particle system. Ann. Probab. 18 (1990), no. 2, 581--601. MR1055421
  • Sudbury, Aidan. Dual families of interacting particle systems on graphs. J. Theoret. Probab. 13 (2000), no. 3, 695--716. MR1785526
  • J.M. Swart. Large Space-Time Scale Behavior of Linearly Interacting Diffusions. PhD thesis, Katholieke Universiteit Nijmegen, 1999. j/ largspscb.pdf.
  • J.M. Swart. Duals and thinnings of some relatives of the contact process. Preprint (18 pages). ArXiv:math.PR/0604335.
  • J.M. Swart. Duals and thinnings of some relatives of the contact process. Pages 203--214 in: Prague Stochastics 2006, M. Hušková and M. Janžura (eds.), Matfyzpress, Prague, 2006.
  • Swart, Jan M. The contact process seen from a typical infected site. J. Theoret. Probab. 22 (2009), no. 3, 711--740. MR2530110
  • Yamada, Toshio; Watanabe, Shinzo. On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 11 1971 155--167. MR0278420

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.