The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • Acosta, Gabriel; Durán, Ricardo G. An optimal Poincaré inequality in $L^ 1$ for convex domains. Proc. Amer. Math. Soc. 132 (2004), no. 1, 195--202 (electronic). MR2021262
  • Adams, Robert A.; Fournier, John J. F. Sobolev spaces. Second edition. Pure and Applied Mathematics (Amsterdam), 140. Elsevier/Academic Press, Amsterdam, 2003. xiv+305 pp. ISBN: 0-12-044143-8 MR2424078
  • Arnold, Ludwig. Stochastische Differentialgleichungen. (German) Theorie und Anwendung. R. Oldenbourg Verlag, Munich-Vienna, 1973. 239 pp. MR0443082
  • Arnold, L.; Theodosopulu, M. Deterministic limit of the stochastic model of chemical reactions with diffusion. Adv. in Appl. Probab. 12 (1980), no. 2, 367--379. MR0569433
  • Austin, Tim D. The emergence of the deterministic Hodgkin-Huxley equations as a limit from the underlying stochastic ion-channel mechanism. Ann. Appl. Probab. 18 (2008), no. 4, 1279--1325. MR2434172
  • Billingsley, Patrick. Convergence of probability measures. Second edition. Wiley Series in Probability and Statistics: Probability and Statistics. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1999. x+277 pp. ISBN: 0-471-19745-9 MR1700749
  • Blount, Douglas. Comparison of stochastic and deterministic models of a linear chemical reaction with diffusion. Ann. Probab. 19 (1991), no. 4, 1440--1462. MR1127711
  • Blount, Douglas. Law of large numbers in the supremum norm for a chemical reaction with diffusion. Ann. Appl. Probab. 2 (1992), no. 1, 131--141. MR1143396
  • Blount, Douglas. Limit theorems for a sequence of nonlinear reaction-diffusion systems. Stochastic Process. Appl. 45 (1993), no. 2, 193--207. MR1208868
  • Blount, Douglas. Density-dependent limits for a nonlinear reaction-diffusion model. Ann. Probab. 22 (1994), no. 4, 2040--2070. MR1331215
  • Blount, Douglas. Diffusion limits for a nonlinear density dependent space-time population model. Ann. Probab. 24 (1996), no. 2, 639--659. MR1404523
  • Bressloff, Paul C. Stochastic neural field theory and the system-size expansion. SIAM J. Appl. Math. 70 (2009/10), no. 5, 1488--1521. MR2578680
  • Buckwar, Evelyn; Riedler, Martin G. An exact stochastic hybrid model of excitable membranes including spatio-temporal evolution. J. Math. Biol. 63 (2011), no. 6, 1051--1093. MR2855804
  • Da Prato, Giuseppe; Zabczyk, Jerzy. Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1992. xviii+454 pp. ISBN: 0-521-38529-6 MR1207136
  • M. H. A. Davis. Lectures on Stochastic Control and Nonlinear Filtering. Springer, 1984.
  • Davis, M. H. A. Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models. With discussion. J. Roy. Statist. Soc. Ser. B 46 (1984), no. 3, 353--388. MR0790622
  • Davis, M. H. A. Markov models and optimization. Monographs on Statistics and Applied Probability, 49. Chapman & Hall, London, 1993. xiv+295 pp. ISBN: 0-412-31410-X MR1283589
  • Ethier, Stewart N.; Kurtz, Thomas G. Markov processes. Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1986. x+534 pp. ISBN: 0-471-08186-8 MR0838085
  • Evans, Lawrence C. Partial differential equations. Second edition. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010. xxii+749 pp. ISBN: 978-0-8218-4974-3 MR2597943
  • M. Falcke. On the role of stochastic channel behaviour in intracellular Ca^2+ dynamics. Biophys. J., 84:42--56, 2002.
  • F. H. Fenton and E. M. Cherry. Models of cardiac cell. Scholarpedia, 8(3):1868, 2008.
  • A. Genadot and M. Thieullen. Averaging for a fully coupled Piecewise Deterministic Markov Process in infinite dimension. arXiv:1109.6581, 2011.
  • A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 117:500--544, 1952.
  • Jacobsen, Martin. Point process theory and applications. Marked point and piecewise deterministic processes. Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, 2006. xii+328 pp. ISBN: 978-0-8176-4215-0; 0-8176-4215-3 MR2189574
  • Kallianpur, G.; Xiong, J. Diffusion approximation of nuclear space-valued stochastic-differential equations driven by Poisson random measures. Ann. Appl. Probab. 5 (1995), no. 2, 493--517. MR1336880
  • C. Koch. Biophysics of Computation. Oxford University Press, New York, 1999.
  • Kotelenez, Peter. Law of large numbers and central limit theorem for linear chemical reactions with diffusion. Ann. Probab. 14 (1986), no. 1, 173--193. MR0815964
  • Kotelenez, Peter. Linear parabolic differential equations as limits of space-time jump Markov processes. J. Math. Anal. Appl. 116 (1986), no. 1, 42--76. MR0837340
  • Kotelenez, Peter. Fluctuations near homogeneous states of chemical reactions with diffusion. Adv. in Appl. Probab. 19 (1987), no. 2, 352--370. MR0889941
  • Kotelenez, Peter. High density limit theorems for nonlinear chemical reactions with diffusion. Probab. Theory Related Fields 78 (1988), no. 1, 11--37. MR0940864
  • Kurtz, Thomas G. Solutions of ordinary differential equations as limits of pure jump Markov processes. J. Appl. Probability 7 1970 49--58. MR0254917
  • Kurtz, T. G. Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. J. Appl. Probability 8 1971 344--356. MR0287609
  • Liu, Kai. Stability of infinite dimensional stochastic differential equations with applications. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 135. Chapman & Hall/CRC, Boca Raton, FL, 2006. xii+298 pp. ISBN: 978-1-58488-598-6; 1-58488-598-X MR2165651
  • B. Mélyk'uti, K. Burrage, and K. C. Zygalakis. Fast stochastic simulation of biochemical reaction systems by alternative formulations of the chemical langevin equation. J. Chem. Phys., 132:164109, 2010.
  • Métivier, Michel. Semimartingales. A course on stochastic processes. de Gruyter Studies in Mathematics, 2. Walter de Gruyter & Co., Berlin-New York, 1982. xi+287 pp. ISBN: 3-11-008674-3 MR0688144
  • Métivier, Michel. Convergence faible et principe d'invariance pour des martingales à valeurs dans des espaces de Sobolev. (French) [Weak convergence and the principle of invariance for martingales with values in Sobolev spaces] Ann. Inst. H. Poincaré Probab. Statist. 20 (1984), no. 4, 329--348. MR0771893
  • Pakdaman, K.; Thieullen, M.; Wainrib, G. Fluid limit theorems for stochastic hybrid systems with application to neuron models. Adv. in Appl. Probab. 42 (2010), no. 3, 761--794. MR2779558
  • Payne, L. E.; Weinberger, H. F. An optimal Poincaré inequality for convex domains. Arch. Rational Mech. Anal. 5 1960 286--292 (1960). MR0117419
  • Prévôt, Claudia; Röckner, Michael. A concise course on stochastic partial differential equations. Lecture Notes in Mathematics, 1905. Springer, Berlin, 2007. vi+144 pp. ISBN: 978-3-540-70780-6; 3-540-70780-8 MR2329435
  • Renardy, Michael; Rogers, Robert C. An introduction to partial differential equations. Second edition. Texts in Applied Mathematics, 13. Springer-Verlag, New York, 2004. xiv+434 pp. ISBN: 0-387-00444-0 MR2028503
  • M. G. Riedler. Approximation of stochastic hybrid systems. In Oberwolfach Reports, Report Nr. 40: Mini-workshop: Dynamics of Stochastic Systems and their Approximation. European Mathematical Society, 2011.
  • M. G. Riedler. Spatio-temporal Stochastic Hybrid Models of Excitable Biological Membranes. PhD thesis, Heriot-Watt University, 2011.
  • S. Stolze. Stochastic equations in Hilbert space with Lévy noise and their applications in finance. Master's thesis, Universität Bielefeld, 2005.
  • S. Swillens, P. Campeil, L. Combettes, and G. Dupont. Stochastic simulation of a single inositol 1,4,5-triphosphate-sensitive Ca^2+ channel reveals repetitive openings during 'blip-like' Ca^2+ transients. Cell Calcium, 23(5):291--302, 1998.
  • Vermes, D. Optimal control of piecewise deterministic Markov process. Stochastics 14 (1985), no. 3, 165--207. MR0800243
  • E. Zeidler. Nonlinear Functional Analysis and its Applications, Vol. 2. Springer, New York, 1990.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.