The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • Alves, O. S. M.; Machado, F. P.; Popov, S. Yu. The shape theorem for the frog model. Ann. Appl. Probab. 12 (2002), no. 2, 533--546. MR1910638
  • Antal, Peter; Pisztora, Agoston. On the chemical distance for supercritical Bernoulli percolation. Ann. Probab. 24 (1996), no. 2, 1036--1048. MR1404543
  • Lawler, Gregory F. Intersections of random walks. Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, 1991. 219 pp. ISBN: 0-8176-3557-2 MR1117680
  • Liggett, T. M.; Schonmann, R. H.; Stacey, A. M. Domination by product measures. Ann. Probab. 25 (1997), no. 1, 71--95. MR1428500
  • Liggett, Thomas M. An improved subadditive ergodic theorem. Ann. Probab. 13 (1985), no. 4, 1279--1285. MR0806224
  • Nagaev, S. V. Large deviations of sums of independent random variables. Ann. Probab. 7 (1979), no. 5, 745--789. MR0542129
  • Procaccia, Eviatar B.; Tykesson, Johan. Geometry of the random interlacement. Electron. Commun. Probab. 16 (2011), 528--544. MR2836759
  • Ráth, Balázs; Sapozhnikov, Artëm. The effect of small quenched noise on connectivity properties of random interlacements, arXiv:1109.5086, 2011
  • Ráth, Balázs; Sapozhnikov, Artëm. On the transience of random interlacements. Electron. Commun. Probab. 16 (2011), 379--391. MR2819660
  • Balázs Ráth and Artëm Sapozhnikov, Connectivity properties of random interlacement and intersection of random walks, ALEA Lat. Am. J. Probab. Math. Stat. 9 (2012), 67--83.
  • Shellef, Eric. On the range of a random walk in a torus, arXiv:1007.1401, 2010.
  • Sznitman, Alain-Sol. Vacant set of random interlacements and percolation. Ann. of Math. (2) 171 (2010), no. 3, 2039--2087. MR2680403
  • Teixeira, Augusto; Windisch, David. On the fragmentation of a torus by random walk. Comm. Pure Appl. Math. 64 (2011), no. 12, 1599--1646. MR2838338

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.