The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • Aronson, D. G. Non-negative solutions of linear parabolic equations. Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 607--694. MR0435594
  • Bass, Richard F.; Chen, Zhen-Qing. Stochastic differential equations for Dirichlet processes. Probab. Theory Related Fields 121 (2001), no. 3, 422--446. MR1867429
  • Bass, Richard F. Diffusions and elliptic operators. Probability and its Applications (New York). Springer-Verlag, New York, 1998. xiv+232 pp. ISBN: 0-387-98315-5 MR1483890
  • Bernardin, Frédéric; Bossy, Mireille; Martinez, Miguel; Talay, Denis. On mean numbers of passage times in small balls of discretized Itô processes. Electron. Commun. Probab. 14 (2009), 302--316. MR2524981
  • Bossy, Mireille; Champagnat, Nicolas; Maire, Sylvain; Talay, Denis. Probabilistic interpretation and random walk on spheres algorithms for the Poisson-Boltzmann equation in molecular dynamics. M2AN Math. Model. Numer. Anal. 44 (2010), no. 5, 997--1048. MR2731401
  • Clerc, M., Dervieux, A., Faugeras, O., Keriven, R., Kybic, J. and Papadopoulo, T.: Comparison of BEM and FEM methods for the E/MEG problem. In ph Proceedings of BIOMAG, Jena, 2002.
  • Clerc, M., Faugeras, O., Keriven, R., Kybic, J. and Papadopoulo, T.: The fast multipole method for the direct E/MEG problem. In phProceedings of IEEE International Symposium on Biomedical Imaging, Washington D.C., 2002.
  • Étoré, Pierre. On random walk simulation of one-dimensional diffusion processes with discontinuous coefficients. Electron. J. Probab. 11 (2006), no. 9, 249--275 (electronic). MR2217816
  • Étoré, Pierre; Lejay, Antoine. A Donsker theorem to simulate one-dimensional processes with measurable coefficients. ESAIM Probab. Stat. 11 (2007), 301--326 (electronic). MR2339295
  • Friedman, Avner. Stochastic differential equations and applications. Two volumes bound as one. Reprint of the 1975 and 1976 original published in two volumes. Dover Publications, Inc., Mineola, NY, 2006. xvi+531 pp. ISBN: 0-486-45359-6 MR2295424
  • Fukushima, Masatoshi; Oshima, Yoichi; Takeda, Masayoshi. Dirichlet forms and symmetric Markov processes. Second revised and extended edition. de Gruyter Studies in Mathematics, 19. Walter de Gruyter & Co., Berlin, 2011. x+489 pp. ISBN: 978-3-11-021808-4 MR2778606
  • Ladyženskaja, O. A.; Solonnikov, V. A.; Uralʹceva, N. N. Linear and quasilinear equations of parabolic type. (Russian) Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R.I. 1967 xi+648 pp. MR0241822
  • Le Gall, J.-F. One-dimensional stochastic differential equations involving the local times of the unknown process. Stochastic analysis and applications (Swansea, 1983), 51--82, Lecture Notes in Math., 1095, Springer, Berlin, 1984. MR0777514
  • Lejay, A.: Méthodes Probabilistes pour l'Homogénéisation des Opérateurs sous Forme Divergence~: Cas Linéaire et Semi-linéaire. Ph.D. Thesis, Université de Provence-Aix-Marseille~I, 2000.
  • Lejay, Antoine; Martinez, Miguel. A scheme for simulating one-dimensional diffusion processes with discontinuous coefficients. Ann. Appl. Probab. 16 (2006), no. 1, 107--139. MR2209338
  • Martinez, M.: Interprétations Probabilistes d'Opérateurs sous Forme Divergence et Analyse de Méthodes Numériques Probabilistes Associées. Ph.D. Thesis, Université de Provence-Aix-Marseille~I, 2004.
  • Martinez, Miguel; Talay, Denis. Discrétisation d'équations différentielles stochastiques unidimensionnelles à générateur sous forme divergence avec coefficient discontinu. (French) [Discretization of one-dimensional stochastic differential equations whose generators are of divergence form with a discontinuous coefficient] C. R. Math. Acad. Sci. Paris 342 (2006), no. 1, 51--56. MR2193396
  • Meyer, P. A. Un cours sur les intégrales stochastiques. (French) Séminaire de Probabilités, X (Seconde partie: Théorie des intégrales stochastiques, Univ. Strasbourg, Strasbourg, année universitaire 1974/1975), pp. 245--400. Lecture Notes in Math., Vol. 511, Springer, Berlin, 1976. MR0501332
  • Nualart, David. The Malliavin calculus and related topics. Second edition. Probability and its Applications (New York). Springer-Verlag, Berlin, 2006. xiv+382 pp. ISBN: 978-3-540-28328-7; 3-540-28328-5 MR2200233
  • Pauwels, E. J. Smooth first-passage densities for one-dimensional diffusions. J. Appl. Probab. 24 (1987), no. 2, 370--377. MR0889801
  • Peskir, Goran. A change-of-variable formula with local time on curves. J. Theoret. Probab. 18 (2005), no. 3, 499--535. MR2167640
  • Revuz, Daniel; Yor, Marc. Continuous martingales and Brownian motion. Third edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 293. Springer-Verlag, Berlin, 1999. xiv+602 pp. ISBN: 3-540-64325-7 MR1725357
  • Rozkosz, Andrzej. Weak convergence of diffusions corresponding to divergence form operators. Stochastics Stochastics Rep. 57 (1996), no. 1-2, 129--157. MR1407951
  • Protter, Philip; San Martín, Jaime. General change of variable formulas for semimartingales in one and finite dimensions. Probab. Theory Related Fields 97 (1993), no. 3, 363--381. MR1245250
  • Salomon, P., Fernàndez-Garcia D. and Jaime Gómez-Hernàndez, J.: A review and numerical assessment of the random walk particle tracking method. phJ. Contaminant Hydrology 87(3-4), (2006), 277--305.
  • Stroock, Daniel W. Diffusion semigroups corresponding to uniformly elliptic divergence form operators. Séminaire de Probabilités, XXII, 316--347, Lecture Notes in Math., 1321, Springer, Berlin, 1988. MR0960535
  • Talay, Denis. Probabilistic numerical methods for partial differential equations: elements of analysis. Probabilistic models for nonlinear partial differential equations (Montecatini Terme, 1995), 148--196, Lecture Notes in Math., 1627, Springer, Berlin, 1996. MR1431302
  • Yan, Liqing. The Euler scheme with irregular coefficients. Ann. Probab. 30 (2002), no. 3, 1172--1194. MR1920104

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.