The Genealogy of Self-similar Fragmentations with Negative Index as a Continuum Random Tree

Bénédicte Haas (Université Pierre et Marie Curie)
Grégory Miermont (DMA, Ecole Normale Supérieure, et Université Paris VI)


We encode a certain class of stochastic fragmentation processes, namely self-similar fragmentation processes with a negative index of self-similarity, into a metric family tree which belongs to the family of Continuum Random Trees of Aldous. When the splitting times of the fragmentation are dense near 0, the tree can in turn be encoded into a continuous height function, just as the Brownian Continuum Random Tree is encoded in a normalized Brownian excursion. Under mild hypotheses, we then compute the Hausdorff dimensions of these trees, and the maximal Hölder exponents of the height functions.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 57-97

Publication Date: February 13, 2004

DOI: 10.1214/EJP.v9-187


  1. D.J. Aldous. Exchangeability and related topics, in Ecole d'été de probabilités de Saint-Flour, XIII-1983, vol.1117 of Lecture Notes in Math., Springer, Berlin, 1985, pp.1--198. MR0883646
  2. D.J. Aldous. The continuum random tree. III, Ann. Probab., 21 (1993), 248--289. MR1207226
  3. D.J. Aldous and J.Pitman. The standard additive coalescent, Ann. Probab., 26 (1998), 1703--1726. MR1675063
  4. J.Berestycki. Ranked fragmentations, ESAIM Probab. Statist., 6 (2002), 157--175 (electronic). MR1943145
  5. J.Bertoin. Lévy processes, Cambridge University Press, Cambridge, 1996. MR1406564
  6. J.Bertoin. Homogeneous fragmentation processes, Probab. Theory Relat. Fields, 121 (2001), 301--318. MR1867425
  7. J.Bertoin. Self-similar fragmentations, Ann. Inst. Henri Poincare Probab. Stat., 38 (2002), 319--340. MR1899456
  8. J.Bertoin. The asymptotic behavior of fragmentation processes, J. Eur. Math. Soc. JEMS, 5 (2003), 395--416. MR2017852
  9. J.Bertoin M.Yor On the entire moments of self-similar Markov processes and exponential functionals of Lévy processes, Ann. Fac. Sci. Toulouse VI. Ser. Math., 11 (2002), no. 1, 33--45. MR1986381
  10. N.H. Bingham, C.M. Goldie, and J.L. Teugels. Regular variation, vol.27 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1989. MR1015093
  11. P.Carmona, F.Petit, and M.Yor. On the distribution and asymptotic results for exponential functionals of Lévy processes, in Exponential functionals and principal values related to Brownian motion, Bibl. Rev. Mat. Iberoamericana, Rev. Mat. Iberoamericana, Madrid, 1997, pp.~73--130. MR1648657
  12. C.Dellacherie, B.Maisonneuve, and P.A. Meyer. Probabilités et Potentiel, Processus de Markov (fin), Compléments de Calcul Stochastique, Herrmann , Paris, 1992. Math. Review number not available
  13. A.W.M. Dress and W.F. Terhalle. The real tree, Adv. Math., 120 (1996), 283--301. MR1397084
  14. T.Duquesne and J.-F. Le Gall. Random trees, Lévy processes and spatial branching processes, Astérisque, 281 (2002), MR1954248
  15. T.Duquesne and J.-F. Le Gall. Probabilistic and fractal aspects of Lévy trees, in preparation (2003). Math. Review number not available
  16. K.J. Falconer. The geometry of fractal sets, vol.85 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1986. MR0867284
  17. A.V. Gnedin. The representation of composition structures, Ann. Probab., 25 (1997), 1437--1450. MR1457625
  18. B.Haas. Loss of mass in deterministic and random fragmentations, Stoch. Proc. App., 106 (2003), 245-277. MR1989629
  19. B.Haas. Regularity of formation of dust in self-similar fragmentations, Ann. Inst. Henri Poincare Probab. Stat. (2004). To appear, available via Math. Review number not available
  20. J.F.C. Kingman. The representation of partition structures, J. London Math. Soc. (2), 18 (1978), 374--380. MR0509954
  21. J.F.C. Kingman. Poisson processes, vol.3 of Oxford Studies in Probability, The Clarendon Press Oxford University Press, New York, 1993. Oxford Science Publications. MR1207584
  22. J.-F. Le Gall. The uniform random tree in a Brownian excursion, Probab. Theory Relat. Fields, 96 (1993), 369--383. MR1231930
  23. G.Miermont. Self-similar fragmentations derived from the stable tree I: splitting at heights, Probab. Theory Relat. Fields, 127 (2003), 423--454. Math. Review number not available
  24. M.Perman. Order statistics for jumps of normalised subordinators, Stochastic Process. Appl., 46 (1993), 267--281. MR1226412
  25. K.-I. Sato. Lévy processes and infinitely divisible distributions, vol.68 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1999. MR1739520

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.