Bridges of quadratic harnesses

Włodek Bryc (University of Cincinnati)
Jacek Wesołowski (Warsaw University of Technology)


Quadratic harnesses are typically non-homogeneous Markov processes with time-dependent state space. Motivated by a question raised in  Émery and Yor (2004) we give explicit formulas for bridges of such processes. Using an appropriately defined f transformation   we show that  all bridges of a given quadratic harness can be transformed into other standard quadratic harnesses. Conversely, each such bridge is anf-transformation  of a standard  quadratic harness. We describe quadratic harnesses that correspond to bridges of some Lévy processes. We  determine all quadratic harnesses that may arise from stitching together  a pair of q-Meixner processes.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-25

Publication Date: December 21, 2012

DOI: 10.1214/EJP.v17-1866


  • Barczy, Mátyás; Pap, Gyula. Connection between deriving bridges and radial parts from multidimensional Ornstein-Uhlenbeck processes. Period. Math. Hungar. 50 (2005), no. 1-2, 47--60. MR2162799
  • Biane, Philippe. Processes with free increments. Math. Z. 227 (1998), no. 1, 143--174. MR1605393
  • Billingsley, Patrick. Convergence of probability measures. John Wiley & Sons, Inc., New York-London-Sydney 1968 xii+253 pp. MR0233396
  • Bożejko, Marek; Kümmerer, Burkhard; Speicher, Roland. $q$-Gaussian processes: non-commutative and classical aspects. Comm. Math. Phys. 185 (1997), no. 1, 129--154. MR1463036
  • Bryc, Włodzimierz; Matysiak, Wojciech; Wesołowski, Jacek. Quadratic harnesses, $q$-commutations, and orthogonal martingale polynomials. Trans. Amer. Math. Soc. 359 (2007), no. 11, 5449--5483. MR2327037
  • Bryc, Włodzimierz; Matysiak, Wojciech; Wesołowski, Jacek. The bi-Poisson process: a quadratic harness. Ann. Probab. 36 (2008), no. 2, 623--646. MR2393992
  • Bryc, Włodzimierz; Matysiak, Wojciech; Wesołowski, Jacek. Free quadratic harness. Stochastic Process. Appl. 121 (2011), no. 3, 657--671. MR2763100
  • Bryc, Włodzimierz; Wesołowski, Jacek. Conditional moments of $q$-Meixner processes. Probab. Theory Related Fields 131 (2005), no. 3, 415--441. MR2123251
  • Bryc, Włodzimierz; Wesołowski, Jacek. The classical bi-Poisson process: an invertible quadratic harness. Statist. Probab. Lett. 76 (2006), no. 15, 1664--1674. MR2248855
  • Bryc, Włodek; Wesołowski, Jacek. Askey-Wilson polynomials, quadratic harnesses and martingales. Ann. Probab. 38 (2010), no. 3, 1221--1262. MR2674998
  • sc Chaumont, L., and Bravo, G. Markovian Bridges: Weak continuity and pathwise constructions. arXiv:0905.2155v1, 2009.
  • Doksum, Kjell. Tailfree and neutral random probabilities and their posterior distributions. Ann. Probability 2 (1974), 183--201. MR0373081
  • Émery, Michel; Yor, Marc. A parallel between Brownian bridges and gamma bridges. Publ. Res. Inst. Math. Sci. 40 (2004), no. 3, 669--688. MR2074696
  • Ferguson, Thomas S. A Bayesian analysis of some nonparametric problems. Ann. Statist. 1 (1973), 209--230. MR0350949
  • Ferguson, Thomas S. Prior distributions on spaces of probability measures. Ann. Statist. 2 (1974), 615--629. MR0438568
  • Fitzsimmons, Pat; Pitman, Jim; Yor, Marc. Markovian bridges: construction, Palm interpretation, and splicing. Seminar on Stochastic Processes, 1992 (Seattle, WA, 1992), 101--134, Progr. Probab., 33, Birkhäuser Boston, Boston, MA, 1993. MR1278079
  • Hammersley, J. M. Harnesses. 1967 Proc. Fifth Berkeley Sympos. Mathematical Statistics and Probability (Berkeley, Calif., 1965/66), Vol. III: Physical Sciences pp. 89--117 Univ. California Press, Berkeley, Calif. MR0224144
  • Jacod, Jean; Protter, Philip. Time reversal on Lévy processes. Ann. Probab. 16 (1988), no. 2, 620--641. MR0929066
  • sc Jamiolkowska, M. Bi-Pascal process -- definition and properties. Master's thesis, Warsaw University of Technology, (in Polish) 2009.
  • Jamison, Benton. Reciprocal processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 30 (1974), 65--86. MR0359016
  • Mansuy, Roger; Yor, Marc. Harnesses, Lévy bridges and Monsieur Jourdain. Stochastic Process. Appl. 115 (2005), no. 2, 329--338. MR2111197
  • Morris, Carl N. Natural exponential families with quadratic variance functions. Ann. Statist. 10 (1982), no. 1, 65--80. MR0642719
  • Plucińska, Agnieszka. On a stochastic process determined by the conditional expectation and the conditional variance. Stochastics 10 (1983), no. 2, 115--129. MR0716819
  • Schoutens, Wim. Stochastic processes and orthogonal polynomials. Lecture Notes in Statistics, 146. Springer-Verlag, New York, 2000. xiv+163 pp. ISBN: 0-387-95015-X MR1761401
  • sc Szpojankowski, K. Free quadratic harness. Master's thesis, Warsaw University of Technology, (in Polish) 2010.
  • Wesołowski, Jacek. Stochastic processes with linear conditional expectation and quadratic conditional variance. Probab. Math. Statist. 14 (1993), no. 1, 33--44. MR1267516
  • Williams, David. Some basic theorems on harnesses. Stochastic analysis (a tribute to the memory of Rollo Davidson), pp. 349--363. Wiley, London, 1973. MR0362565

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.