The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


    Aldous, David ; Pitman, Jim. Two recursive decompositions of Brownian bridge related to the asymptotics of random mappings. Technical Report 595, Dept. Statistics, U.C. Berkeley, 2002.
    Aldous, David. The continuum random tree. III. Ann. Probab. 21 (1993), no. 1, 248--289. MR1207226
    Aldous, David ; Miermont, Gregory; Pitman, Jim. Weak convergence of random p-mappings and the exploration process of the inhomogeneous continuum random tree. In preparation, 2004.
    Aldous, David ; Pitman, Jim. Brownian bridge asymptotics for random mappings. Random Structures Algorithms 5 (1994), no. 4, 487--512. MR1293075
    Aldous, David; Pitman, Jim. The asymptotic distribution of the diameter of a random mapping. C. R. Math. Acad. Sci. Paris 334 (2002), no. 11, 1021--1024. MR1913728
    Aldous, David; Pitman, Jim. Invariance principles for non-uniform random mappings and trees. Asymptotic combinatorics with application to mathematical physics (St. Petersburg, 2001), 113--147, NATO Sci. Ser. II Math. Phys. Chem., 77, Kluwer Acad. Publ., Dordrecht, 2002. MR1999358
    Bertoin, Jean; Pitman, Jim. Path transformations connecting Brownian bridge, excursion and meander. Bull. Sci. Math. 118 (1994), no. 2, 147--166. MR1268525
    Biane, Ph. Relations entre pont et excursion du mouvement brownien rÈel. Ann. Inst. H. PoincarÈ Probab. Statist. 22 (1986), no. 1, 1--7. MR0838369
    Biane, Philippe. Some comments on the paper: "Brownian bridge asymptotics for random mappings" [Random Structures Algorithms 5 (1994), no. 4, 487--512 MR95k:60055 ] by D. J. Aldous and J. W. Pitman. Random Structures Algorithms 5 (1994), no. 4, 513--516. MR1293076
    Camarri, Michael; Pitman, Jim. Limit distributions and random trees derived from the birthday problem with unequal probabilities. Electron. J. Probab. 5 (2000), no. 1, 18 pp. (electronic). MR1741774
    Drmota, Michael; Gittenberger, Bernhard. On the profile of random trees. Random Structures Algorithms 10 (1997), no. 4, 421--451. MR1608230
    Harris, B. A survey of the early history of the theory of random mappings. Probabilistic methods in discrete mathematics (Petrozavodsk, 1992), 1--22, Progr. Pure Appl. Discrete Math., 1, VSP, Utrecht, 1993. MR1383124
    Joyal, AndrÈ. Une thÈorie combinatoire des sÈries formelles. (French) [A combinatorial theory of formal series] Adv. in Math. 42 (1981), no. 1, 1--82. MR0633783
    Kolchin, Valentin F. Random mappings. Translated from the Russian. With a foreword by S. R. S. Varadhan. Translation Series in Mathematics and Engineering. Optimization Software, Inc., Publications Division, New York, 1986. xiv + 207 pp. ISBN: 0-911575-16-2 MR0865130
    Marckert, Jean-FranÁois; Mokkadem, Abdelkader. The depth first processes of Galton-Watson trees converge to the same Brownian excursion. Ann. Probab. 31 (2003), no. 3, 1655--1678. MR1989446
    O'Cinneide, C. A.; Pokrovskii, A. V. Nonuniform random transformations. Ann. Appl. Probab. 10 (2000), no. 4, 1151--1181. MR1810869
    Pitman, Jim. Random mappings, forests, and subsets associated with Abel-Cayley-Hurwitz multinomial expansions. Sém. Lothar. Combin. 46 (2001/02), Art. B46h, 45 pp. (electronic). MR1877634
    Pitman, Jim. Combinatorial Stochastic Processes. Technical Report 621, Dept. Statistics, U.C. Berkeley, 2002. Lecture notes for St. Flour course, July 2002.
    Pitman, Jim; Yor, Marc. Arcsine laws and interval partitions derived from a stable subordinator. Proc. London Math. Soc. (3) 65 (1992), no. 2, 326--356. MR1168191

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.