The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • Brézin, E.; Hikami, S. Correlations of nearby levels induced by a random potential. Nuclear Phys. B 479 (1996), no. 3, 697--706. MR1418841
  • Erdös, L., Knowles, A., Yau, H.-T., Yin, J.: Spectral Statistics of Erdös-Rényi Graphs II: Eigenvalue Spacing and the Extreme Eigenvalues. ARXIV1103.3869
  • Erdős, László; Péché, Sandrine; Ramírez, José A.; Schlein, Benjamin; Yau, Horng-Tzer. Bulk universality for Wigner matrices. Comm. Pure Appl. Math. 63 (2010), no. 7, 895--925. MR2662426
  • Erdős, László; Ramírez, José; Schlein, Benjamin; Tao, Terence; Vu, Van; Yau, Horng-Tzer. Bulk universality for Wigner Hermitian matrices with subexponential decay. Math. Res. Lett. 17 (2010), no. 4, 667--674. MR2661171
  • Erdős, László; Schlein, Benjamin; Yau, Horng-Tzer. Local semicircle law and complete delocalization for Wigner random matrices. Comm. Math. Phys. 287 (2009), no. 2, 641--655. MR2481753
  • Erdős, László; Schlein, Benjamin; Yau, Horng-Tzer. Universality of random matrices and local relaxation flow. Invent. Math. 185 (2011), no. 1, 75--119. MR2810797
  • Erdös, L., Schlein, B., Yau, H.-T., Yin, J.: The local relaxation flow approach to universality of the local statistics for random matrices. ph Annales Inst. H. Poincaré (B), Probability and Statistics. 48, no. 1, (2012), 1--46.
  • Erdös, L., Yau, H.-T.: Universality of local spectral statistics of random matrices. To appear in Bull. of Amer. Math. Soc. ARXIV1106.4986
  • Erdös, L., Yau, H.-T., Yin, J.: Bulk universality for generalized Wigner matrices. To appear in Prob. Theor. Rel. Fields. Preprint arXiv:1001.3453
  • Erdős, László; Yau, Horng-Tzer; Yin, Jun. Universality for generalized Wigner matrices with Bernoulli distribution. J. Comb. 2 (2011), no. 1, 15--81. MR2847916
  • Erdös, L., Yau, H.-T., Yin, J.: Rigidity of Eigenvalues of Generalized Wigner Matrices. To appear in Adv. Math. ARXIV1007.4652
  • Johansson, Kurt. Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices. Comm. Math. Phys. 215 (2001), no. 3, 683--705. MR1810949
  • Mehta, Madan Lal. Random matrices. Second edition. Academic Press, Inc., Boston, MA, 1991. xviii+562 pp. ISBN: 0-12-488051-7 MR1083764
  • Tao, Terence; Vu, Van. Random matrices: universality of local eigenvalue statistics. Acta Math. 206 (2011), no. 1, 127--204. MR2784665
  • Tao, Terence; Vu, Van. The Wigner-Dyson-Mehta bulk universality conjecture for Wigner matrices. Electron. J. Probab. 16 (2011), no. 77, 2104--2121. MR2851058

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.