Limit theorems for empirical processes based on dependent data

Patrizia Berti (University of Modena and Reggio-Emilia)
Luca Pratelli (Accademia Navale di Livorno)
Pietro Rigo (University of Pavia)


Let $(X_n)$ be any sequence of random variables adapted to a filtration $(\mathcal{G}_n)$. Define $a_n(\cdot)=P\bigl(X_{n+1}\in\cdot\mid\mathcal{G}_n\bigr)$, $b_n=\frac{1}{n}\sum_{i=0}^{n-1}a_i$, and $\mu_n=\frac{1}{n}\,\sum_{i=1}^n\delta_{X_i}$. Convergence in distribution of the empirical processes $$ B_n=\sqrt{n}\,(\mu_n-b_n)\quad\text{and}\quad C_n=\sqrt{n}\,(\mu_n-a_n)$$ is investigated under uniform distance. If $(X_n)$ is conditionally identically distributed, convergence of $B_n$ and $C_n$ is studied according to Meyer-Zheng as well. Some CLTs, both uniform and non uniform, are proved. In addition, various examples and a characterization of conditionally identically distributed sequences are given.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-18

Publication Date: January 29, 2012

DOI: 10.1214/EJP.v17-1765


  • Aldous, D. J. Limit theorems for subsequences of arbitrarily-dependent sequences of random variables. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 40 (1977), no. 1, 59--82. MR0455090
  • Bassetti, Federico; Crimaldi, Irene; Leisen, Fabrizio. Conditionally identically distributed species sampling sequences. Adv. in Appl. Probab. 42 (2010), no. 2, 433--459. MR2675111
  • Berti, Patrizia; Rigo, Pietro. A uniform limit theorem for predictive distributions. Statist. Probab. Lett. 56 (2002), no. 2, 113--120. MR1881164
  • Berti, Patrizia; Pratelli, Luca; Rigo, Pietro. Limit theorems for a class of identically distributed random variables. Ann. Probab. 32 (2004), no. 3A, 2029--2052. MR2073184
  • Berti, Patrizia; Pratelli, Luca; Rigo, Pietro. Asymptotic behaviour of the empirical process for exchangeable data. Stochastic Process. Appl. 116 (2006), no. 2, 337--344. MR2197981
  • Berti, Patrizia; Crimaldi, Irene; Pratelli, Luca; Rigo, Pietro. Rate of convergence of predictive distributions for dependent data. Bernoulli 15 (2009), no. 4, 1351--1367. MR2597596
  • Berti, Patrizia; Crimaldi, Irene; Pratelli, Luca; Rigo, Pietro. A central limit theorem and its applications to multicolor randomly reinforced urns. J. Appl. Probab. 48 (2011), no. 2, 527--546. MR2840314
  • Crimaldi, Irene; Letta, Giorgio; Pratelli, Luca. A strong form of stable convergence. Séminaire de Probabilités XL, 203--225, Lecture Notes in Math., 1899, Springer, Berlin, 2007. MR2409006
  • Dawid, A. P. The well-calibrated Bayesian. With comments by Joseph B. Kadane and D. V. Lindley and a rejoinder by the author. J. Amer. Statist. Assoc. 77 (1982), no. 379, 605--613. MR0675887
  • Dubins, Lester E.; Savage, Leonard J. How to gamble if you must. Inequalities for stochastic processes. McGraw-Hill Book Co., New York-Toronto-London-Sydney 1965 xiv+249 pp. MR0236983
  • Dudley, R. M. Uniform central limit theorems. Cambridge Studies in Advanced Mathematics, 63. Cambridge University Press, Cambridge, 1999. xiv+436 pp. ISBN: 0-521-46102-2 MR1720712
  • Etemadi, N.; Kaminski, M. Strong law of large numbers for $2$-exchangeable random variables. Statist. Probab. Lett. 28 (1996), no. 3, 245--250. MR1406997
  • Ferguson, Thomas S. A Bayesian analysis of some nonparametric problems. Ann. Statist. 1 (1973), 209--230. MR0350949
  • Fortini, Sandra; Ladelli, Lucia; Regazzini, Eugenio. Exchangeability, predictive distributions and parametric models. Sankhyā Ser. A 62 (2000), no. 1, 86--109. MR1769738
  • Hall, P.; Heyde, C. C. Martingale limit theory and its application. Probability and Mathematical Statistics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. xii+308 pp. ISBN: 0-12-319350-8 MR0624435
  • Kallenberg, Olav. Spreading and predictable sampling in exchangeable sequences and processes. Ann. Probab. 16 (1988), no. 2, 508--534. MR0929061
  • Kurtz, Thomas G. Random time changes and convergence in distribution under the Meyer-Zheng conditions. Ann. Probab. 19 (1991), no. 3, 1010--1034. MR1112405
  • Liu, Jun S. Monte Carlo strategies in scientific computing. Springer Series in Statistics. Springer-Verlag, New York, 2001. xvi+343 pp. ISBN: 0-387-95230-6 MR1842342
  • Meyer, P.-A.; Zheng, W. A. Tightness criteria for laws of semimartingales. Ann. Inst. H. Poincaré Probab. Statist. 20 (1984), no. 4, 353--372. MR0771895
  • Tierney, Luke. Markov chains for exploring posterior distributions. With discussion and a rejoinder by the author. Ann. Statist. 22 (1994), no. 4, 1701--1762. MR1329166
  • van der Vaart, Aad W.; Wellner, Jon A. Weak convergence and empirical processes. With applications to statistics. Springer Series in Statistics. Springer-Verlag, New York, 1996. xvi+508 pp. ISBN: 0-387-94640-3 MR1385671

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.