An asymptotic expansion for the discrete harmonic potential

Gady Kozma (Tel Aviv University)
Ehud Schreiber (Tel Aviv University)


We give two algorithms that allow to get arbitrary precision asymptotics for the harmonic potential of a random walk.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-17

Publication Date: February 4, 2004

DOI: 10.1214/EJP.v9-170


  1. Yasunari Fukai and Kôhei Uchiyama (1996), Potential kernel for two-dimensional random walk, Ann. Probab. 24, 1979-1992. MR 97m:60098
  2. Gady Kozma, Scaling limit of loop erased random walk — a naive approach, preprint. Math. Review number not available.
  3. Vladimir Matsaev and Mikhail Sodin (2002), Asymptotics of Fourier and Laplace transforms in weighted spaces of analytic functions, Algebra i Analiz 14, 107-140. translation in St. Petersburg Math. J. 14, 615-640. MR 2003h:42009
  4. W. H. McCrea and F. J. W. Whipple (1940), Random paths in two and three dimensions, Proc. Roy. Soc. Edinburgh 60, 281-298. MR 0002733
  5. Frank Spitzer (1976), Principles of Random Walk, Second Edition, Springer-Verlag. MR 52:9383
  6. Elias M. Stein and Guido Weiss (1971), Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press. MR 46:4102
  7. Alfred Stöhr (1950), Über einige lineare partielle Differenzengleichungen mit konstanten Koeffizienten III, Math. Nachr. 3, 330-357. MR 0040555
  8. Kôhei Uchiyama (1998), Green's Functions for Random Walks on $Z^N$, Proc. London Math. Soc. (3) 77, 215-240. MR 99f:60132

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.