The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  1. Berbee, H. (1987), Chains with infinte connections: Uniqueness and Markov representation, Probab. Theory Related Fields 76, 243-253. MR 89c:60052
  2. Bressaud, X. Fernández, R. and Galves, A. (1999), Decay of correlations for non Hˆlderian dynamics. A coupling approach, Electron. J. Probab. 4. MR 2000j:60049
  3. Bowen, R. (1975), Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin-New York. MR 56 #1364
  4. Coelho, Z. and Quas, A. N. (1998), Criteria for $overline d$-continuity, Trans. Amer. Math. Soc. 350, 3257-3268. MR 99d:28028
  5. Dachian, S. and Nahapetian, B.S. (2001), Description of random fields by means of one-point conditional distributions and some applications, Markov Process. Related Fields 7, 193-214. MR 2002f:60102
  6. Dobrushin, R.L. (1968), Description of a random field by means of conditional probabilities and conditions of its regularity, Theory of probability and its applications 13, 197-224. MR 37 #6989
  7. Fernández, R. and Maillard, G. (2003), Chains with complete connections. General theory, uniqueness, loss of memory and decay of correlations, (math.PR/0305026)
  8. Fernández, R. and Pfister, C.-E. (1997), Global specifications and nonquasilocality of projections of Gibbs measures, Ann. Probab. 25, 1284-1315. MR 98h:60066
  9. Geogii, H.-O. (1974), Stochastische Felder und ihre Anwendung auf Interaktionssysteme, Lecture Notes, Institut f¸r Angewandte Mathematik, Universit‰t Heidelberg.
  10. Georgii, H.-O. (1988), Gibbs Measures and Phase Transitions, Walter de Gruyter & Co., Berlin, Vol. 9, Berlin-New York. MR 89k:82010
  11. Goldstein, S. Kuik, R. Lebovitz, J. L. and Maes, C. (1989), >From PCA's to equilibrium systems and back, Comm. Math. Phys. 125, 71-79. MR 91b:82031
  12. Harris, T. E. (1955), On chains of infinite order, Pacific J. Math. 5, 707-724. MR 17,755b
  13. Johansson, A. and ÷berg, A. (2002), Square summability of variations of $g$-functions and uniqueness of $g$-measures, Preprint.
  14. Kalikow, S. (1990), Random Markov processes and uniform martingales, Israel J. Math. 71, 33-54. MR 92a:60152
  15. Keane, M. (1972), Strongly mixing $g$-measures, Invent. Math. 16, 309-324. MR 46 #9295
  16. Keller, G. (1998), Equilibrium states in ergodic theory, London Mathematical Society Student Texts, Vol. 42, Cambridge University Press, Cambridge. MR 99e:28022
  17. Lalley, S. P. (1986), Regenerative representation for one-dimensional Gibbs states, Ann. Prob. 14, 1262-1271. MR 88c:60076
  18. Lanford, O. E. (1973), Entropy and equilibrium states in classical statistical mechanics, Lenard, A. (ed.), Statiscal mechanics and mathematical problems, Battelle Seattle Rencontres 1971, {LPN}h 20, pp. 1-113.
  19. Ledrappier, F. (1974), Principe variationnel et systèmes dynamiques symboliques, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 30, 185-202. MR 53 #8384
  20. Onicescu, O. and Mihoc, G. (1935), Sur les chaînes statistiques, C. R. Acad. Sci. Paris 200, 511-512.
  21. Ruelle, D. (1978), Thermodynamic formalism, Encyclopedia of Mathematics and its Applications, 5. Addison-Wesley Publishing Co. MR 80g:82017
  22. Stenflo, ÷. (2003), Uniqueness in $g$-measures, Nonlinearity 16, 403-410. MR 2004a:28027
  23. Walters, P. (1975), Ruelle's operator theorem and $g$-measures, Trans. Amer. Math. Soc. 214, 375-387. MR 54 #515

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.