Download this PDF file Fullscreen Fullscreen Off

#### References

- Z.-D. Bai, C.-C. Chao, H.-K. Hwang and W.-Q. Liang
(1998). On the variance of the number
of maxima in random vectors and its applications,
*Annals of Applied Probability*,**8**, 886-895. Math. Review link - Z.-D. Bai, H.-K. Hwang, W.-Q. Liang, and T.-H. Tsai (2001).
Limit theorems for the number of maxima in random samples from planar regions,
*Electronic Journal of Probability*,**6**, paper no. 3, 41 pages; available at www.math.washington.edu/~ejpecp/EjpVol6/paper3.pdf Math. Review link - Yu. V. Prohorov (1953),
Asymptotic behavior of the binomial distribution,
in
*Selected Translations in Mathematical Statistics and Probability*, Vol.**1**, pp. 87-95, ISM and AMS, Providence, R.I. (1961); translation from Russian of:*Uspehi Matematiceskih Nauk*,**8**(1953), no. 3 (35), 135-142. Math. Review link - A. D. Barbour and A. Xia (2001). The number of two dimensional
maxima,
*Advances in Applied Probability*,**33**, 727-750. Math. Review link - Y. Baryshnikov (2000). Supporting-points processes and some of their applications,
*Probability Theo ry and Related Fields*,**117**, 163-182. Math. Review link - R. A. Becker, L. Denby, R. McGill and A. R. Wilks
(1987). Analysis of data from the "Places Rated Almanac",
*The American Statistician*,**41**, 169-186. - A. J. Cabo and P. Groeneboom (1994). Limit theorems for functionals of convex hulls,
*Probability The ory and Related Fields*,**100**, 31-55. Math. Review link - T. M. Chan (1996). Output-sensitive results on convex hulls, extreme points, and related problems,
*Discrete and Computational Geometry*,**16**, 369-387. Math. Review link - S. N. Chiu and M. P. Quine, Central limit theory for the number of seeds in a growth model in
**R**with inhomogeneous Poisson arrivals,^{d}*Annals of Applied Probability*,**7**(1997), 802-814. Math. Review link - A. Datta and S. Soundaralakshmi (2000), An
effcient algorithm for computing the maximum
empty rectangle in three dimensions,
*Information Sciences*,**128**, 43-65. Math. Review link - L. Devroye (1993). Records, the maximal layer, and the uniform distributions in monotone sets,
*Computers and Mathematics with Applications*,**25**, 19-31. Math. Review link - M. E. Dyer and J. Walker (1998). Dominance in multi-dimensional multiple-choice knapsack
problems,
*Asia-Pacific Journal of Operational Research*,**15**, 159-168. Math. Review link - I. Z. Emiris, J. F. Canny and R. Seidel (1997).
Effcient perturbations for handling geometric degeneracies,
*Algorithmica*,**19**, 219-242. Math. Review link - J. L. Ganley (1999). Computing optimal rectilinear Steiner trees: A survey and experimental evaluation,
*Discrete Applied Mathematics*,**90**, 161-171. Math. Review link - M. J. Golin (1993). Maxima in convex regions, in
*Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms*, (Austin, TX, 1993), 352-360, ACM, New York. Math. Review link - P. Groeneboom (1988), Limit theorems for convex hulls,
*Probability Theory and Related Fields*,**79**, 327-368. Math. Review link - H.-K. Hwang (2002). Second phase changes in random m-ary search trees and generalized
quicksort: convergence rates,
*Annals of Probability*,**31**, 609-629. Math. Review link - R. E. Johnston and L. R. Khan (1995). A note on dominance in unbounded knapsack problems,
*Asia-Paciffic Journal of Operational Research*,**12**, 145-160. Math. Review link - S. Martello and P. Toth (1990).
*Knapsack Problems: Algorithms and Computer Implementations*, John Wiley & Sons, New York. Math. Review link - R. Neininger and L. Rüschendorf (2002).
A general contraction theorem and asymptotic normality in combinatorial structures,
*Annals of Applied Probability*, accepted for publication (2003); available at www.math.uni-frankfurt.de/~neiningr/. - V. V. Petrov (1975).
*Sums of Independent Random Variables*, Springer-Verlag, New York. Math. Review link - M. Zachariasen (1999). Rectilinear full Steiner tree generation,
*Networks*,**33**, 125-143. Math. Review link

This work is licensed under a Creative Commons Attribution 3.0 License.