### Stability Properties of Constrained Jump-Diffusion Processes

**Rami Atar**

*(Technion - Israel Institute of Technology)*

**Amarjit Budhiraja**

*(University of North Carolina)*

#### Abstract

We consider a class of jump-diffusion processes, constrained to a polyhedral cone $G\subset\mathbb{R}^n$, where the constraint vector field is constant on each face of the boundary. The constraining mechanism corrects for ``attempts'' of the process to jump outside the domain. Under Lipschitz continuity of the Skorohod map $\Gamma$, it is known that there is a cone ${\cal C}$ such that the image $\Gamma\phi$ of a deterministic linear trajectory $\phi$ remains bounded if and only if $\dot\phi\in{\cal C}$. Denoting the generator of a corresponding unconstrained jump-diffusion by $\cal L$, we show that a key condition for the process to admit an invariant probability measure is that for $x\in G$, ${\cal L}\,{\rm id}(x)$ belongs to a compact subset of ${\cal C}^o$.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-31

Publication Date: March 20, 2002

DOI: 10.1214/EJP.v7-121

#### References

- R. Atar, A. Budhiraja, and P. Dupuis.
On positive recurrence of constrained diffusion processes,
*Ann. Probab.***29**, (2001) 979--1000. MR1849184 - J. Bertoin.
*Levy Processes*, Cambridge University Press, (1996). MR98e:60117 - A. Budhiraja and P. Dupuis,
Simple necessary and sufficient conditions for the stability of
constrained processes,
*SIAM J. Appl. Math.***59**, (1999) 1686--1700. MR2000j:93106 - H. Chen and A. Mandelbaum.
Discrete flow networks: bottleneck analysis and fluid approximations,
*Math. Oper. Res.***16**, (1991) 408--446. MR92b:60090 - J. Dai.
On positive Harris recurrence of multiclass queuing networks: a
unified approach via fluid limit models,
*Ann. Appl. Probab.***4**, (1994) 49--77. MR96c:60113 - P. Dupuis and H. Ishii.
On Lipschitz continuity of the solution mapping to the Skorokhod
problem, with applications,
*Stochastics***35**, (1991) 31--62. MR93e:60110 - P. Dupuis and K. Ramanan.
Convex duality and the Skorokhod Problem I, II,
*Probab. Theor. Rel. Fields***2**, (1999) 153--195, 197--236. MR2001f:49041 - P. Dupuis and R.J. Williams.
Lyapunov functions for semimartingale reflecting Brownian motions,
*Ann. Probab.***22**, (1994) 680--702. MR95k:60204 - S.N. Ethier and T.G. Kurtz.
*Markov Processes: Characterization and Convergence*, John Wiley and Sons, (1986). MR88a:60130 - J.M. Harrison and M.I. Reiman.
Reflected Brownian motion on an orthant,
*Ann. Probab.***9**, (1981) 302--308. MR82c:60141 - J.M. Harrison and R.J. Williams.
Brownian models of open queueing networks with homogeneous customer
populations,
*Stochastics***22**, (1987) 77--115. MR89b:60215 - J.M. Harrison and R.J. Williams.
Multidimensional reflected Brownian motions having exponential
stationary distributions,
*Ann. Probab.***15**, (1987) 115--137. MR88e:60091 - D.G. Hobson and L.C.G. Rogers.
Recurrence and transience of reflecting Brownian motion in the
quadrant,
*Math. Proc. Camb. Phil. Soc.***113**, (1993) 387--399. MR93k:60207 - J. Jacod and A. Shiryaev.
*Limit Theorems for Stochastic Processes*, Springer-Verlag, (1987). MR89k:60044 - H. Kaspi and O. Kella.
Stability of feedforward fluid networks with Levy input,
*J. App. Prob.***33**, (1996) 513--522. MR97c:60188 - O. Kella.
Stability and nonproduct form of stochastic fluid networks with
Levy inputs,
*Ann. Appl. Probab.***6**, (1996) 186--199. MR97k:60203 - H.J. Kushner.
*Approximation and Weak Convergence Methods for Random Processes, with Applications to Stochastic Systems Theory*, Cambridge, Mass. MIT Press, (1984). MR86a:60086 - H.J. Kushner.
*Heavy Traffic Analysis of Controlled Queueing and Communication Networks*, Springer-Verlag, New York, (2001). MR2002c:90003 - V.A. Malyshev.
Networks and dyamical systems,
*Adv. Appl. Probab.***25**, (1993) 140--175. MR94f:60090 - S. Meyn and D. Down.
Stability of generalized Jackson networks,
*Ann. Appl. Probab.***4**, (1994) 124--148. MR95b:60122 - A.V. Skorohod.
*Asymptotic Methods in the Theory of Stochastic Differential Equations*, American Mathematical Society, (1987). MR88m:60164

This work is licensed under a Creative Commons Attribution 3.0 License.