Diffusion and Scattering of Shocks in the PartiallyAsymmetric Simple Exclusion Process
Gunter M. Schütz (Forschungszentrum Jülich)
Abstract
We study the behavior of shocks in the asymmetric simple exclusion process on $Z$ whose initial distribution is a product measure with a finite number of shocks. We prove that if the particle hopping rates of this process are in a particular relation with the densities of the initial measure then the distribution of this process at any time is a linear combination of shock measures of the structure similar to that of the initial distribution. The structure of this linear combination allows us to interpret this result by saying that the shocks of the initial distribution perform continuous time random walks on $Z$ interacting by the exclusion rule. We give explicit expressions for the hopping rates of these random walks. The result is derived with a help of quantum algebra technique. We made the presentation self-contained for the benefit of readers not acquainted with this approach, but interested in applying it in the study of interacting particle systems.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-21
Publication Date: February 21, 2002
DOI: 10.1214/EJP.v7-110
References
- A. Boldrighini, C. Cosimi, A. Frigio, M. Grasso-Nunes, Computer simulations of shock waves in the completely asymmetric simple exclusion process, J. Stat. Phys.55, (1989), 611-623. MR 90d:82001
- B. Derrida, S. A. Janowsky, J. L. Lebowitz, E. R. Speer, Exact solution of the totally asymmetric simple exclusion process: Shock profiles, J. Stat. Phys.73 (1993), 813-842. MR 95e:60102
- B. Derrida, J. L. Lebowitz, E. R. Speer, Shock profiles in the asymmetric simple exclusion process in one dimension, J. Stat. Phys.89 (1997), 135-167. MR 99f:82049
- W. Feller, Introduction to the probability theory and its applications. Vol. I, Wiley P, 1968 (3-d edition). MR 37:3604
- P. A. Ferrari, Shocks in one-dimensional processes with drift. In Probability and Phase Transition. (Ed. G. Grimmett), Cambridge, 1993. MR 95h:60160
- P. A. Ferrari, L. R. G. Fontes, Shock fluctuations in the asymmetric simple exclusion process, Probab. Theor. Rel. Fields 99, (1994), 305-319. MR 95h:60159
- P. A. Ferrari, L. R. G. Fontes and M. E. Vares, The asymmetric simple exclusion model with multiple shocks, Ann. Inst. Henri PoincarÃ, ProbabilitÃs et Statistiques 36, 2 (2000) 109-126. MR 2001g:60244
- P. A. Ferrari, C. Kipnis, S. Saada, Microscopic structure of traveling waves in the asymmetric simple exclusion process, Ann. Prob. 19, No.1 (1991), 226-244. MR 92b:60099
- A. N. Kirillov, N. Yu. Reshetikhin, in: Proceedings of the 1988 Luminy Conference on Infinite-Dimensional Lie Algebras and Groups, V. G. Kac (ed.), World Scientific, Singapore (1988). MR 90m:17022
- A. B. Kolomeisky, G. M. SchÃ¼tz, E. B. Kolomeisky and J. P. Straley, Phase diagram of one-dimensional driven lattice gases with open boundaries, J. Phys. A 31 (1998), 6911 - 6919. Math Review number not avialable.
- K. Krebs, Ph.D. thesis, University of Bonn (2001). Math Review number not avialable.
- T. M. Liggett, Interacting Particle Systems Springer, Berlin (1985). MR 86e:60089
- T. M. Liggett, Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin (1999). MR 2001g:60247
- V. Pasquier and H. Saleur, Common structures between finite systems and conformal field theories through quantum groups, Nucl. Phys. B 330 (1990), 523--556. MR 91c:81146
- G. M. SchÃ¼tz, Duality relations for asymmetric exclusion process, J. Stat. Phys. 86, Nos. 5/6 (1997), 1265 - 1287. MR 98c:82026
- G. M. SchÃ¼tz, Exactly solvable models for many-body systems far from equilibrium,in Phase Transitions and Critical Phenomena. Vol. 19, Eds. C. Domb and J. Lebowitz, Academic Press, London, (2000). Math Review number not avialable.
- G. M. SchÃ¼tz, Exact solution of the master equation for the asymmetric exclusion process, J. Stat. Phys. 88 (1997), 427 - 445. MR 99e:82062
This work is licensed under a Creative Commons Attribution 3.0 License.