The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  1. J.T. Cox and A. Greven. On the long term behavior of some finite particle systems. Probab. Theory Related Fields, 85(2):195-237, 1990. Math Review link
  2. D.A. Dawson and A. Greven. Multiple space-time scale analysis for interacting branching models. Electron. J. Probab., 1:no. 14, approx. 84 pp. (electronic), 1996. Math Review link
  3. D.A. Dawson, L.G. Gorostiza and A.Wakolbinger. Occupation time fluctuations in branching systems. J. Theoret. Probab., 14:729-796, 2001. Math Review link
  4. D.A. Dawson and E.A. Perkins. Historical processes. Mem. Amer. Math. Soc., 93(454):iv+179, 1991. Math Review link
  5. R.L. Dobrushin. Gaussian and their subordinated self-similar random generalized fields. Ann. Probab., 7(1):1-28, 1979. Math Review link
  6. E.B. Dynkin. Branching particle systems and superprocesses. Ann. Probab., 19(3):1157-1194, 1991. Math Review link
  7. A. Greven. A phase transition for the coupled branching process. I. The ergodic theory in the range of finite second moments. Probab. Theory Related Fields, 87(4):417-458, 1991. Math Review link
  8. I.M. Gel'fand and N.Ya. Vilenkin. Generalized functions IV: Applications of harmonic analysis. Academic Press, New York and London, 1964. Math Review link
  9. L.G. Gorostiza, S. Roelly and A. Wakolbinger. Sur la persistance du processus de Dawson-Watanabe stable. l'interversion de la limite en temps et de la renormalisation. In Sem. Prob. XXIV, volume 1426 of Lecture Notes in Mathematics, pages 275-281, Berlin, 1990. Springer-Verlag. Math Review link
  10. L.G. Gorostiza and A. Wakolbinger. Persistence criteria for a class of critical branching particle systems in continuous time. Ann. Probab., 19(1):266-288, 1991. Math Review link
  11. R.A. Holley and D.W. Stroock. Generalized Ornstein-Uhlenbeck processes and infinite particle branching Brownian motions. Publ. Res. Inst. Math. Sci., Kyoto Univ., 14:741-788, 1978. Math Review link
  12. J.-F. LeGall. Une construction trajectorielle de certains processus de Markov à valeurs mesures. C. R. Acad. Sci. Paris Sér. I Math., 308(18):533-538, 1989. Math Review link
  13. J.-F. LeGall. Brownian excursions, trees and measure-valued branching processes. Ann. Probab., 19(4):1399-1439, 1991. Math Review link
  14. T.M. Liggett and F. Spitzer. Ergodic theorems for coupled random walks and other systems with locally interacting components. Z. Wahrsch. Verw. Gebiete, 56(4):443-468, 1981. Math Review link
  15. F. Spitzer. Principles of random walk. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1964. The University Series in Higher Mathematics. Math Review link
  16. I. Zähle. Renormalization of the voter model in equilibrium. Ann. Probab., 29(3):1262-1302, 2001. Math Review link

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.