Renormalizations of Branching Random Walks in Equilibrium

Iljana Zähle (Universität Erlangen-Nürnberg)


We study the $d$-dimensional branching random walk for $d>2$. This process has extremal equilibria for every intensity. We are interested in the large space scale and large space-time scale behavior of the equilibrium state. We show that the fluctuations of space and space-time averages with a non-classical scaling are Gaussian in the limit. For this purpose we use the historical process, which allows a family decomposition. To control the distribution of the families we use the concept of canonical measures and Palm distributions.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-57

Publication Date: December 3, 2001

DOI: 10.1214/EJP.v7-106


  1. J.T. Cox and A. Greven. On the long term behavior of some finite particle systems. Probab. Theory Related Fields, 85(2):195-237, 1990. Math Review link
  2. D.A. Dawson and A. Greven. Multiple space-time scale analysis for interacting branching models. Electron. J. Probab., 1:no. 14, approx. 84 pp. (electronic), 1996. Math Review link
  3. D.A. Dawson, L.G. Gorostiza and A.Wakolbinger. Occupation time fluctuations in branching systems. J. Theoret. Probab., 14:729-796, 2001. Math Review link
  4. D.A. Dawson and E.A. Perkins. Historical processes. Mem. Amer. Math. Soc., 93(454):iv+179, 1991. Math Review link
  5. R.L. Dobrushin. Gaussian and their subordinated self-similar random generalized fields. Ann. Probab., 7(1):1-28, 1979. Math Review link
  6. E.B. Dynkin. Branching particle systems and superprocesses. Ann. Probab., 19(3):1157-1194, 1991. Math Review link
  7. A. Greven. A phase transition for the coupled branching process. I. The ergodic theory in the range of finite second moments. Probab. Theory Related Fields, 87(4):417-458, 1991. Math Review link
  8. I.M. Gel'fand and N.Ya. Vilenkin. Generalized functions IV: Applications of harmonic analysis. Academic Press, New York and London, 1964. Math Review link
  9. L.G. Gorostiza, S. Roelly and A. Wakolbinger. Sur la persistance du processus de Dawson-Watanabe stable. l'interversion de la limite en temps et de la renormalisation. In Sem. Prob. XXIV, volume 1426 of Lecture Notes in Mathematics, pages 275-281, Berlin, 1990. Springer-Verlag. Math Review link
  10. L.G. Gorostiza and A. Wakolbinger. Persistence criteria for a class of critical branching particle systems in continuous time. Ann. Probab., 19(1):266-288, 1991. Math Review link
  11. R.A. Holley and D.W. Stroock. Generalized Ornstein-Uhlenbeck processes and infinite particle branching Brownian motions. Publ. Res. Inst. Math. Sci., Kyoto Univ., 14:741-788, 1978. Math Review link
  12. J.-F. LeGall. Une construction trajectorielle de certains processus de Markov à valeurs mesures. C. R. Acad. Sci. Paris Sér. I Math., 308(18):533-538, 1989. Math Review link
  13. J.-F. LeGall. Brownian excursions, trees and measure-valued branching processes. Ann. Probab., 19(4):1399-1439, 1991. Math Review link
  14. T.M. Liggett and F. Spitzer. Ergodic theorems for coupled random walks and other systems with locally interacting components. Z. Wahrsch. Verw. Gebiete, 56(4):443-468, 1981. Math Review link
  15. F. Spitzer. Principles of random walk. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1964. The University Series in Higher Mathematics. Math Review link
  16. I. Zähle. Renormalization of the voter model in equilibrium. Ann. Probab., 29(3):1262-1302, 2001. Math Review link

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.