Ballistic Deposition on a Planar Strip
Siva Athreya (University of British Columbia)
Min Kang (Northwestern University)
Abstract
We consider ballistic diffusion limited aggregation on a finite strip $[0, L-1]$ times $\mathbb{Z}_+$ in $\mathbb{Z}^2$ for some $L$ in $\mathbb{Z}_+$. We provide numerical bounds on the growth in the height process.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 31-38
Publication Date: February 14, 2001
DOI: 10.1214/ECP.v6-1032
References
- M. Barlow, Fractals and diffusion-limited aggregation, Bull. Sc. Math, 117:161-169,1993. Math Review 94b:60016
- M. Barlow, R. Pemantle and E. Perkins, Diffusion-limited aggregation on a tree, Probability Theory and Related Fields, 107:1-60, 1997. Math Review 97m:60146
- M. Bramson, D. Griffeath, and G. Lawler, and Internal diffusion limited aggregation. The Annals of Probability, 20:2117-2140,1992. Math Review 94a:60105
- D. Eberz, Ph.D. thesis, University of Washington, 1999.
- H. Kesten, How long are the arms in DLA.?, J. Phys. A, 20:L29-L33,1987. Math Review 87m:82013
- M. Penrose and J. Yukich, Limit theory for random sequential packing and deposition, preprint.
- A. Shiryaev, Probability, Graduate texts, Springer-Verlag, Newyork 1995. Math Review 85a:60007
This work is licensed under a Creative Commons Attribution 3.0 License.