Electron. J. Diff. Eqns., Vol. 1996(1996), No. 08, pp. 1-22.

Nonexistence of Positive Singular Solutions for a Class of Semilinear Elliptic Systems

Cecilia S. Yarur

We study nonexistence and removability results for nonnegative sub-solutions to
$$\left. \eqalign{
  \Delta u =& a(x) v^p \cr
  \Delta v =& b(x) u^q \cr} \right\}
  {\rm  in } \Omega \subset R^N,\quad N\ge 3\,,
where $p\geq 1$, $q\geq 1$, $pq$ greater than 1, and a and b are nonnegative functions. As a consequence of this work, we obtain new results for biharmonic equations.

Submitted June 6, 1996. Published September 6, 1996.
Math Subject Class.: 35J20, 31A35.
Key Words: Elliptic systems, Removable singularity, Biharmonic equation.

Show me the PDF file (225 KB), TEX file, and other files for this article.

Ceclia S. Yarur
Departamento de Matematicas, Universidad de Santiago de Chile, Casilla 307, Correo 2, Santiago, Chile.
E-mail: cyarur@usach.cl
Return to the EJDE home page.